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1 Introduction
The balance between storage and computation of complex words is a major point of
departure both for theories of lexical representation (e.g., Goldberg 2006, Halle &
Marantz 1993, Jackendoff 1975) and processing (e.g., Baayen et al. 1997, Butter-
worth 1983, Taft 2004). The atoms of lexical memory that are implicated in lexical
processing experiments—be they whole words, roots and affixes, or some combi-
nation thereof—must ultimately coincide with the units of morphological theory if
the latter are to be theories of the mental lexicon.

One clue into the architecture of lexical memory comes from the presence of
robust frequency effects in lexical decision tasks, in which subjects judge whether
a written or spoken stimulus is a real word and processing complexity is measured
by reaction time. The recognition of complex words is facilitated both by whole
word frequency (as measured from some representative corpus) as well as base (also
called cluster or root) frequency, the summed frequency of all words sharing the
same root. Frequency effects have long been known to account for a large amount
of variance in lexical decision latencies (e.g., Howes & Solomon 1951).

The existence of base frequency effects suggest that the roots posited by mor-
phologists are stored in memory and are integral to lexical access. Many models of
lexical processing, however, downplay the role of roots and of base frequency. Pro-
ponents of these dual-route models (e.g., Baayen et al. 1997, Baayen & Schreuder
1999, Caramazza et al. 1988) argue that complex words are also stored in memory
and emphasize the role of whole word frequency in word recognition. Some studies
(e.g., Sereno & Jongman 1997) deny base frequency effects altogether.

In this study, we investigate whole word frequency effects for English regularly
inflected words reported by Alegre & Gordon (1999), Baayen et al. (2007), New
et al. (2004), and Sereno & Jongman (1997). We model a very large database of
visual lexical decision latencies with mixed effects regression, using residualization
to control for confounding predictors of reaction time. The result is a more nuanced
view of base and whole word frequency effects and the storage-computation debate.

After reviewing previous experimental work on complex word recognition (§2),
we describe the data set and construct a statistical model of lexical decision laten-
cies for regularly inflected complex words in English (§3). We use this model to
investigate word and base frequency effects (§4) and conclude that the whole word
frequency effects do not argue in favor of whole word storage; in fact, they are
inconsistent with the predictions of dual-route processing models (§5–6).
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2 Related work
The processing literature is replete with evidence that the units of lexical access may
be smaller than words. Lexical decision experiments indicate that words (and non-
word foils) are decomposed into constituents—which resemble the roots and affixes
of morphological theory—at an early stage of processing, and that the products of
decomposition are the primary units of lexical access. However, other experiments
suggest that decomposition may not be the only mechanism for word recognition.

2.1 Evidence for decomposition
Non-word lexical decision latencies are one source of evidence for decomposition.
Seminal studies by Taft & Forster (1975, 1976), Taft et al. (1986), and Caramazza
et al. (1988) find that non-words like *re-sert, which appear to be morphologically
complex, take longer to reject that non-words which lack apparent morphological
structure such as *refant). Apparent morphological complexity appears to result in
false decomposition, leading the processing system down a garden path.

Studies which influence lexical decision latencies with primes also provide ev-
idence for decomposition. There is a rich body of literature attesting to facilitation
of word recognition when prime and target are inflectional variants of the same
root (e.g., Feldman & Fowler 1987, Kempley & Morton 1982, Marslen-Wilson
et al. 1993, Meunier & Marslen-Wilson 2004, Murrell & Morton 1974, Orsolini
& Marslen-Wilson 1997, Sonnenstuhl et al. 1999, Stanners et al. 1979a, Stockall
& Marantz 2006). Some studies report that the facilitatory effect of inflectional
priming is as large as identity priming (e.g., Fowler et al. 1985, Napps 1989). This
morphological priming effect cannot be attributed to mere orthographic or semantic
similarity between prime and target, as experiments with very brief prime exposure
(i.e., below the threshold for conscious visual recognition) find that orthographic
and semantic similarity do not prime (e.g., Marslen-Wilson et al. 2008, Rastle et al.
2000) or even inhibit target recognition (e.g., Baayen et al. 2007, Drews & Zwitser-
lood 1995, Grainger et al. 1991, Henderson et al. 1984).

2.2 Whole-word access
The presence of inflectional priming and false decomposition effects rules out a
naïve view of word recognition (e.g., Butterworth 1983) as consisting of little more
than a search for whole words in lexical memory.1 However, it is not clear that
decomposition is the only mechanism for complex word recognition. In particular,
whole word frequency effects in lexical decision tasks are cited as evidence for
whole word storage. A number of studies investigating recognition of regularly
inflected words (e.g., Baayen et al. 1997, Burani et al. 1984, Schriefers et al. 1992)
find that when whole word frequency is held constant, base frequency facilitates
word recognition, and when base frequency is held constant, there is a facilitatory
effect of whole word frequency.

1Chan (2008) and Hankamer (1992) reach the same conclusion by a different method: they argue
that the number of unique words in morphologically rich languages is so great—in some languages,
infinite—that no speaker could hope to encounter (or store) more than a tiny portion of these words
in a lifetime. But, since speakers are capable of understanding and producing words they have never
before heard, some system for recognizing (and producing) complex words is needed.
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There is some disagreement as to whether English regularly inflectedwords, par-
ticularly those of high frequency, exhibit root frequency effects. Alegre & Gordon
(1999), New et al. (2004), and Taft (1979, 2004) find robust base frequency effects,
but Sereno & Jongman (1997) and Baayen et al. (2007) do not. Alegre & Gordon
(1999) find both whole word and base frequency effects, but report that whole word
frequency effects are absent among items with low whole word frequency. They
argue for a dual-route processing model in which high frequency words are stored
and accessed as undecomposedwholes, but decomposition is used for low frequency
words. However, Baayen et al. report that even low frequency words exhibit whole
word frequency effects but only marginal root frequency effects.

2.3 Diagnosis of storage
Frequency effects are simply correlations between processing time and frequency of
an item or its components. Researchers have generally assumed that these correla-
tions reflect the granularity of lexical memory. For instance, if whole word storage
were the only atom of the mental lexicon, one would expect that whole words, but
not subcomponents like roots, would exhibit frequency effects. While this naïve
assumption is a useful heuristic, this correlation may also be misleading, since it
is always possible that the correlation at one level, e.g., whole words, may reflect
storage at a different level, e.g., roots.

One way to define the relationship between the frequency of whole words and
their components is to consider complex words as the output of a word formation
process. In this paper, we restrict our analysis to inflected words, morphologically
complex words which we analyze as generated by the combination of a base and a
single suffix. We use the terms base and suffix throughout, but no alignment with any
particular theoretical perspective on word formation is implied. For our purposes,
all theories which recognize a connection between words sharing the same base
(e.g., laughed and laughing) are isomorphic.

Whole word frequency can be expressed as the product of two components:

p(word) = p(base, suffix) = p(base) · p(suffix|base)
In prose, the probability of an inflectedword is the probability of the joint occurrence
of the word’s base and inflectional suffix. For example, the probability of laughed
would be the probability of the base laughmultiplied by the probability with which
laugh takes the suffix -ed. From this equation, it is apparent that frequency effects at
one level might be explained at another. It might seem, as Baayen et al. (2003) write,
that whole word frequency effects pose a challenge to full decomposition models,
which posit no whole word storage, but this might reflect whole word storage, a
correlated measure such as base frequency, or even a combination of the two. The
correlation between whole word and base frequency is attenuated in languages like
English, which have limited inflectional morphology, and in high word frequency
forms, since these are the whole words that account for the most variance in base
frequency counts. This is particularly important given high word frequency forms in
Dutch and English form the empirical base for the whole word storage hypothesis.
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3 Method
Our goal is to explain the contradictory findings concerning frequency effects, and
more generally to establish a firm empirical base on which to construct cognitive
models of lexical access. We suspect that the many divergent results cannot only
be attributed to differences in task or language; rather, they reflect the poor gen-
eralizability of classic lexical decision experiments. Most of the work cited above
relies on experiments with a few dozen target stimuli, often taken from a single mor-
phological class. All too frequently, little attention is paid to variation in reaction
time between subjects or items. In this study, we revisit frequency effects in lexical
decision using a much larger data set and a more principled statistical methodology.

3.1 Materials
To provide the largest sample size possible, we use data from the English Lexicon
Project (ELP; Balota et al. 2007), a visual lexical decision “megastudy” with over
40,000 unique words and nonwords. Baayen et al. (2007), Yap & Balota (2009)
model real word reaction times for subsets of the ELP data, but average per-item
reaction times. As Baayen (2004) notes, this produces an unnecessary reduction in
statistical power (i.e., an increase in Type II error). Consequently, we conduct all
our analyses at the trial level.

We model reaction times in a subset of this database filtered by pre-determined
exclusion criteria at the level of trial, subject, and item. All trials with incorrect
responses are excluded. No trials are excluded or truncated based on reaction time;
Ulrich & Miller (1994) advise that the effect of reaction-time exclusions is highly
unpredictable and that the cost of excluding “real” data may outweigh any benefits
of excluding outliers. We also exclude data from a small number of speakers who
reported that English was not their first language at test time. We analyze only items
which are real words consisting of a simplex base and a regular inflectional suffix
(past tense -d, progressive and gerund -ing, and noun plural and verbal agreement -s)
according to the ELP morphological coding. This excludes free bases, compounds,
derivatives, as well as irregularly inflected words. Items which do not share a base
with any other word in the ELP morphological coding were excluded, as their base
frequency could not be accurately estimated. The resulting data comprises 201,856
trials, 6,684 unique words, and 772 subjects.

3.2 Predictors
While a vast number of reaction time predictors have been proposed in the literature,
here we choose predictors which either reflect well-known properties of speeded
reading or measure possible frequency effects at different levels of lexical memory.

Orthographic word length Word length has long been recognized to have an
inhibitory effect on visual word recognition, as longer words may require additional
saccades even for shallow processing. While many measures of word length have
been proposed, New et al. (2006) find that squared orthographic length (i.e., number
of characters squared) is most closely correlated with lexical decision latencies in
the ELP data, and we adopt this measure.
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Number of syllables We also include another length measure, syllable count, as
New et al. (2006) find that this has a robust inhibitory effect on visual recognition
which is partially independent of squared word length.

Orthographic neighborhood density Lexical decision latencies are longer when
the target (whether word or non-word) is similar to many other existing words.
Yarkoni et al. (2008) propose a new measure of similarity called Orthographic Lev-
enshtein Distance (OLD20) which is more closely correlated with latencies in the
ELP data than other measures proposed in the literature. We include this predictor
as reported in the ELP database.

Word and base frequency Word and base frequency represent some of the most
important predictors of lexical decision latencies and it has recently been recog-
nized that analysis of word and base frequency effects are sensitive to the choice
of frequency norms. We use the SUBTLEX-US frequency norms, derived from a
a corpus of 51 million tokens of American English movie subtitles. Brysbaert &
New (2009) report that these norms are more closely correlated with a number of
behavioral measures than other popular frequency norms, including the Brown Cor-
pus (Kučera & Francis 1967), CELEX2 (Baayen et al. 1996) and HAL (Burgess &
Livesay 1998). For each word, bases were identified according to the ELP database
morphological segmentations. Base frequency is computed by summing the fre-
quencies of all the words in the ELP database that share the base. As is standard,
frequency measures were log-transformed before they were entered into the model.

Most of the prior studies dichotomize these measures by, for example, grouping
together all words with “high base frequency” and ignoring frequency-related vari-
ance within that group. It has long been known, however, that that dichotomizing
continuous measures like frequency greatly reduces statistical power and increases
the rate of Type I error (e.g., Cohen 1983, Baayen 2004). We do not include mea-
sures of subjective (subject-reported) frequency, as Brysbaert & Cortese (2011) find
that that subjective frequency ratings are not needed to model lexical decision la-
tencies if high-quality “objective” frequency norms are available.

Suffix conditional probability Some inflected forms of a base are more common
than others, for example admired is roughly five times more frequent than admires;
equivalently, the base admire is roughly five times more likely to take the past tense
suffix -d than the 3sg. agreement suffix -s. Suffix conditional probability is defined
as the probability that a suffix appears given a particular base:

p(suffix|base) = p(base, suffix)
p(base)

This measure is also log-transformed before modeling.

Other fixed effects We incorporate a number of fixed effects unrelated to the
variables of interest in this study but known to influence reaction time. Trial number
controls for any effects of fatigue, and subject education level and gender account
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SL NS OLD WF BF
Squared length (SL) –
Number of syllables (NS) .779 –
Ortho. Levenshtein Distance (OLD) .843 .700 –
Whole word frequency (WF) −.096 −.063 −.092 –
Base frequency (BF) −.134 −.091 −.132 .600 –
Suffix conditional prob. (SCP) .059 .050 .084 .074 −.098

Table 1: Item-level Pearson correlations between the continuous fixed effects, with
non-trivial correlations (|r| ≥ .3) in bold.

for gross differences between subjects. Identity of the suffix was included as a sum-
coded fixed effect.

3.3 Modeling procedure
We use mixed effects linear regression with trial log RT as the dependent variable.
We use a maximal random effects structure (Barr et al. in press). This includes
subject-level random intercepts and slopes for each fixed effect. While they are
appropriate for this experimental design (Clark 1973), item random intercepts are
not included due to convergence failures duringmodeling. To test the significance of
individual predictors, we use the log-likelihood ratio test to compare the full model
to a model with the same random effects structure but with the corresponding fixed
effects removed.

3.4 Residualization
As already discussed, there are non-trivial correlations between base and word fre-
quency; in fact, as Table 1 shows, partial multicollinearity afflicts all item-level
predictors except suffix conditional probability. The predictors must be made or-
thogonal to achieve numerical stability and efficient convergence with the mixed
effects model estimation procedure. We accomplish this with a technique known
as residualization. In the case of two non-trivially correlated predictors Xi,Xj, one
predictor is selected to enter the regression first, and then a linear model with the
latter as the dependent variable and the former as the independent predictor:

Xj = βXi + ε
A new predictor X′

j is then defined to be equal to ε, the residual error, and entered
into the model. Since the previous equation describes a model of Xj in terms of a
linear scaling of Xi, this is the part of Xj which is not explained by—is uncorrelated
with—Xi. Ford et al. (2010) use this technique to study the effects of base and word
frequency on a lexical decision task: they enter word frequency first and residualize
base frequency with respect to it. As Gorman (2010) shows, this procedure can be
carried on indefinitely for multiple correlated predictors, as follows:

X′
j = residual(Xj|Xi)

X′
k = residual(Xk|Xi,X′

j)
X′
l = residual(Xl|Xi,X′

j,X′
k)
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This technique is often sensitive to the order in which variables are residualized. In
our models, we enter non-frequency predictors (squared orthographic length, num-
ber of syllables, OLD20) first, de-emphasizing the overall effect of the frequency
components. We then enter the different components of frequency in varying orders,
depending on the hypothesis being tested.

4 Evaluating whole word frequency as a storage diagnostic
Alegre & Gordon (1999, henceforth AG99), explore frequency effects across a
broad range of frequencies and argue for a dual-route model in which “whole-word
frequency effects [are] obtained for items in the higher end of the frequency distri-
bution but not for items in the lower end” (ibid.:43). In their Experiment 2, they find
whole word frequency effects only among higher frequencywords and conclude that
recognition based on whole word storage is available for regularly inflected words
with whole word frequencies above 6 tokens per million words. However, they in-
terpret the lack of whole word frequency effects among lower-frequency words as
evidence that they must be decomposed during recognition. In this section we use
trials of the same items from the ELP to replicate Experiment 2. Unlike AG99, we
find robust frequency effects among low and high frequency words.

4.1 Methodological challenges in exploring frequency effects
There are a number of reasons to be concerned that the findings of AG99 may not be
replicable: the use of low quality frequency norms, failure to address multicollinear-
ity among predictors in their linear model, and the arbitrary dichotomization of fre-
quency using a median split. Alegre & Gordon use the Kučera & Francis (1967)
norms, which would account for significantly less variance in their data (Brysbaert
& New 2009) than the then-available CELEX2 (Baayen et al. 1996) norms or the
newer SUBTLEX-US norms. For the items used in their Experiment 2, the Pearson
correlation between the Kučera & Francis and SUBTLEX-US frequency norms is
0.604, surprisingly low for two measures of whole word frequency. Additionally,
they perform multiple regression with orthographic length, base frequency—called
cluster frequency in their study—andwhole word frequency in the samemodel with-
out any controls for multicollinearity. Analyzing trials of a subset of their items
from their Experiment 2 using ELP trials and their modeling strategy results in a
condition number (κ) of 132; κ > 30 is thought to indicate a problematic degree of
multicollinearity (Belsey et al. 1980).

4.2 Effects of frequency
The scale of the ELP data allows us to not merely compare the size of frequency ef-
fects across a dichotomizedmeasure of word frequencies, as is usually done, but also
to examine the effect of frequency across a large range of word frequencies using
local regression (LOESS). To obtain a more accurate picture of the average effect
of frequency across items, whole word frequency is plotted against the per-item av-
erages of residuals of a baseline model in Figure 1. The residuals are computed
by modeling subject-level variance in lexical decision trials using fixed effects for
number of trial, education, and gender, and a per-subject random effect. The mean
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Figure 1: LOESS curve fit of whole word frequency against mean per-item residu-
alized reaction times.

residual is computed for each item. Then, log whole word frequency is fit with a
LOESS curve. The dashed lines delimit the regions of interest in AG99’s Experi-
ment 2, regions equivalent in frequency to the 1–6 and 7–44 per million frequency
ranges in the Kučera & Francis norms.

Visual inspection of the frequency ranges of interest in Figure 1 reveal an im-
mediate incongruity between the pattern observed in our data set and AG99; in our
data, the magnitude of the frequency effect appears to in fact be larger in the lower
frequency range. Modeling confirms that for ELP items, there is a significant effect
of whole word frequency in the low range (χ2LR(1) = 147.73, p = 5.45 × 10−34).
AG99 find no significant whole word frequency effect in the lower range; modeling
all items used in AG99 for which there are trials in the ELP using the Kučera &
Francis norms and the model structure described in §3 leads to significant effects
in both ranges (low, χ2LR(1) = 4.05, p = .0441; high, χ2LR(1) = 4.04, p = .0445).
Thus, contrary to AG99’s findings, there is indeed a significant effect of whole word
frequency among low frequency items, even when using a subset of the same items
used in their study. Surprisingly, lower frequency items participatemore strongly in
this effect than higher frequency ones. This raises doubts as to whether there exists
any point below which whole word frequency effects are not observed. As shown
in Figure 1, lowering the frequency range of interest does not decrease the size of
whole word frequency effects; the only way to select a frequency range in which no
frequency effects would be found would be to select the highest frequency items.
Applying the logic of AG99, this would lead to the nonsensical conclusion that the
highest frequency items are computed online while the rarest words are stored.

A crucial question to consider is why we find such different results in our study
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than in AG99. While we cannot identify a single change in methodology between
our study and theirs responsible for the difference, the larger sample size and appro-
priate handling of multicollinearity imply a lower Type II error rate for our study,
allowing us to detect effects missed in Alegre and Gordon’s study. Even across
AG99’s experiments, poor statistical power is apparent; among low frequency items
they find an effect of base frequency in Experiment 4 but not in Experiment 2. In
summary, high-quality frequency estimates and more principled statistical method-
ology leads us to conclude that there is no evidence that whole word frequency
effects are qualitatively different for high frequency and low frequency words.

4.3 Modeling the effects of decomposition
Dual-route models (e.g., Baayen et al. 1997) predict that the nature of frequency ef-
fects observed should depend on the route used for lexical access. For items that trig-
ger the whole word pathway, whole word frequency effects should be observed. For
items that trigger the decompositional route, frequency effects should be observed
on the decomposed components, bases and suffixes. The challenge in formalizing
such a model and testing this claim is to identify the criteria for determining which
of the two pathways is used, and when. The most important potential criterion is
thought to be whole word frequency, but as we have demonstrated, there is no evi-
dence for a behavioral distinction between high and low frequency items. No other
consistent and testable criterion has emerged, making the claims of a dual-route
model unverifiable.

We are able to test whether we see effects of decomposition across the broad
frequency range recorded in the ELP data. This can be done by comparing a model
with only whole word frequency, a non-decompositional model, against one with
base frequency and suffix conditional probability, a decompositional model. If we
find that the model with the decompositional predictors provides a better fit, this
demonstrates that decomposition on the whole provides a better account for the data.
This in itself would not preclude a dual-routemodel, but it would show that the effect
of base frequency is not “marginal” as Baayen et al. (2007) claim.

Though it is not obvious, the simpler model, with a whole-word frequency pre-
dictor, is nested by a model in which whole word frequency is represented by the
independent predictors of base frequency and suffix conditional probability. This
is because mixed effects estimation is not required to assign them different coeffi-
cients, and the decomposition of whole word frequency can be re-written as:

βi log2 p(word) = βi log2 p(base) + βi log2 p(suffix|base)
In other words, log word frequency times some constant βi is the sum of βi times
log base frequency and βi times log suffix conditional probability. Comparison of
maximal mixed effects models for the whole word and decompositional models re-
sults in a significantly better fit for the decompositional model (χ2LR(7) = 411.74,
p = 7.24 × 10−85),2 showing that the decompositional model provides a better ac-

2The apparently large number (7) of degrees of freedom in the model comparison stems from
the use of correlated random effects in a maximal model. One degree of freedom is required for the
additional fixed effect, one for the additional per-subject random slope, and five for the correlation
of the random slope with other random effects.
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Estimate Std. err. p-value
Intercept 9.28 1.45×10−2 (n.a.)
Trial number −2.76×10−5 1.01×10−6 2.40×10−164
Education 4.81×10−3 1.24×10−3 1.24×10−4
Gender =Male −8.93×10−2 1.01×10−2 1.90×10−18
Suffix = -ed 9.51×10−3 1.50×10−3 3.28×10−44
Suffix = -ing 1.22×10−2 1.81×10−3 (n.a.)
Suffix = -s −2.18×10−2 (n.a.) (n.a.)
Squared length 2.99×10−3 7.08×10−5 2.36×10−208
Ortho. Levenshtein Distance 8.70×10−2 3.57×10−3 2.04×10−101
Resid. number of syllables 2.75×10−2 2.30×10−3 2.00×10−30
Resid. base frequency −2.98×10−2 5.09×10−4 1.15×10−282
Resid. suffix conditional prob. −2.66×10−2 6.54×10−4 1.33×10−190

Model: log2(RT) ~ Trial Number + Gender + Education + Suffix + Squared Length
+ Resid. OLD + Resid. Num. Syllables + Resid. log2 Base Frequency + Resid.
log2 Suffix Conditional Probability + (Squared Length + Resid. OLD + Resid.
Num. Syllables + Resid. log2 Base Frequency + Resid. log2 Suffix Conditional
Probability | Subject)

Table 2: Coefficients, associated statistics, and the model specification for the de-
compositional model.

count of the ELP data: the effect of decomposition is certainly not “marginal”.
Table 2 summarizes the decompositional model; following Barr et al. (in press),

p-values were computed via log-likelihood ratio test comparing the full model and
a model with the fixed effect of interest removed, but random effects structure held
constant.3 Modeling log RT produces in a better fit than modeling untransformed
RT because of the positive skewed nature of RTs. However, a log response makes
coefficient interpretation difficult. By using the same model but with an untrans-
formed response, it is clear that the effects of interest are of acceptable size: doubling
base frequency decreases RT by 15.9ms, doubling suffix conditional probability de-
creases it by 14.7ms.

4.4 Discussion
The fact that AG99’s failure to find an effect of whole word frequency in low fre-
quency ranges was so widely cited as evidence for a dual-route model merits fur-
ther discussion. Their evidence was simply a positive result in one set of items and
a negative result in another set. However, if we assume for the sake of argument
that decomposition always occurs during lexical access, we would expect a num-
ber of studies to show the same result due to the risk of Type II error; some studies
will always fail to find the true effect, especially when plagued with methodologi-
cal problems (e.g., failure to control for multicollinearity) inflating the Type II error
rate. Thus, studies which rely on negative results and which are limited to a single

3In Table 2, we provide the p-value associated with testing for all levels of the sum-coded suffix
predictor and the std. error for the two levels estimated by the model.
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set of items and a single experiment (e.g., AG99, Baayen et al. 1997) do not provide
evidence for the dual-route hypothesis; they are necessary but not sufficient.

In order to have strong evidence for a dual-route model, we would need to satisfy
a number of requirements. First, there would need to be a testable set of criteria for
determining which items are stored and which are composed. Second, it would need
to be demonstrated on a data set such as the ELP that when those criteria are applied,
the resulting model fits the data better than a decompositional model.

We are not able check for evidence of a dual-route model because we do not be-
lieve there are sufficient experimental results informing us about the conditions un-
der which whole complex words are stored. For example, Baayen et al. (1997) give
evidence that whole word storage likely plays a part in the handling of certain high
frequency items and a specific inflection of a specific syntactic category in Dutch
based on potential ambiguity of a specific suffix, but we do not yet have evidence
of a generalized motivation for when whole word storage of morphologically com-
plex words occurs. We do not present a model that excludes whole word storage;
whole word storage can be incorporated if it has sufficient motivation. However, as
noted above, this would require an explicit model of what is stored, something that
is nothing more a promissory note after decades of the dual-route hypothesis.

In its current form, the dual-route hypothesis is unfalsifiable. There are no gen-
eralizable, explicit models of which forms are stored or computed; when decision
criteria have been specified, they are either demonstrably incorrect (e.g., Alegre &
Gordon 1999), or ad hoc, without any test of generalization beyond the particular
items used in an experiment (e.g., Baayen et al. 1997, Betram et al. 2000).

5 General discussion
5.1 Other word classes
This study has focused on regularly inflected words. However, these results bear
on the processing of other types of complex words, insofar as these behave like
regularly inflected words in lexical decision tasks.

As vividly demonstrated by the famous wug-test (Berko 1958), speakers extend
regular patterns to novel roots but only very rarely do so with irregular patterns.
In contrast, the morphophonological idiosyncrasies of irregularly inflected words
make them a likely candidate for storage. Kelliher & Henderson (1990) find that
irregulars exhibit base frequency effects when whole word frequency is held con-
stant. Some studies find that irregular primes produce as much facilitation as regu-
lar primes (e.g., Allen & Badecker 2002, Fowler et al. 1985, Meunier & Marslen-
Wilson 2004, Orsolini &Marslen-Wilson 1997, Stockall &Marantz 2006), whereas
others report that irregulars prime less than regulars (e.g., Feldman & Fowler 1987,
Kempley & Morton 1982, Marslen-Wilson et al. 1993, Napps 1989, Stanners et al.
1979a, Sonnenstuhl et al. 1999).

Similarly, derived words may have morphophonological, syntactic, or seman-
tic idiosyncrasies suggestive of whole word storage. However, Colé et al. (1989,
1997), Ford et al. (2010), Taft (1979), and Taft & Ardasinski (2006) find the same
independent effects of word and base frequency effects for derivationally-related
words also found in inflection. Further, many studies report facilitation with deriva-
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tional primes (e.g., Emmorey 1989, Forster & Azuma 2000, Henderson et al. 1984,
Marslen-Wilson et al. 1994, Marslen-Wilson et al. 2008, Rastle et al. 2000, Stanners
et al. 1979b, Taft &Kougious 2004). Raveh&Rueckl (2000) report that inflectional
and derivational priming effects are of approximately the same magnitude.

While there is not yet a consensus in this literature, we conclude that there is
not yet sufficient evidence to reject the null hypothesis that derived or irregularly
inflected words are processed in the same fashion as regularly inflected words.

5.2 Whole word storage in phonology
Our demonstration that the correlation between whole word frequency and pro-
cessing time neither entails whole word storage nor imperils decomposition-based
recognition lessens the appeal of dual-route theories to phonologists, who have re-
cently adopted the hypothesis of frequent whole word storage to derive correlations
between word frequency and variable phonological processes (e.g., Bybee 2001)
and lexically-specific phonological alternations (e.g., Hayes & Londe 2006).

6 Conclusions
This set of experiments presents the first large-scale validation of decompositional
models of morphological processing. We have demonstrated that the most widely
cited evidence for the absence of frequency effects in low-frequency regulars (Ale-
gre & Gordon 1999) cannot be replicated and was most likely the result of a Type II
error from poor frequency estimates and statistical practices. We have shown that
the correlation between whole word frequency and processing time is not inconsis-
tent with full decompositional models of lexical access and that a decompositional
model provides a good account for a large set of lexical decision data. While we do
not rule out a dual-route model, we conclude that the dual-route literature has thus
far failed to produce a testable hypothesis that could be used to compare dual-route
and decompositional models more generally. Even the impoverished morphology
of English can provide some preliminary steps towards the proper understanding of
morphological complexity. The recent availability of “lexicon projects” in many
other languages opens further avenues for research.
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