
Chapter 11

Quantitative Analysis*

Kyle Gorman and Daniel Ezra Johnson

A sociolinguist who has gathered so much data that it has become difficult to make sense 

of the raw observations can turn to graphical presentation, and to descriptive statistics, 

techniques for distilling a collection of data into a few key numerical values, allowing the 

researcher to focus on specific, meaningful properties of the data set (see, e.g., Johnson in press). 

However, the sociolinguist is rarely satisfied with a mere snapshot of linguistic behavior, 

and desires not just to describe, but to evaluate hypotheses about the connections between 

linguistic behavior, speakers, and society. The researcher begins this process by gathering data 

with the potential to falsify the hypotheses under consideration (e.g. Lucas, Bayley, & Valli 

2001: 43). A sociolinguist who suspects that women and men in a certain speech community 

differ in the rate at which they realize the final consonant of a word ending in <ing> with coronal 

[n] rather than velar [ŋ] would collect tokens of these words in the speech of women and men, 

recording which variant was used. While this data, in the form of a descriptive statistic or an 

appropriate graph, could suggest that women differ from men in the rate at which they use these 

competing variants, these techniques cannot exclude the possibility that this difference is due to 

random chance. Inferential statistics allow the researcher to compute the probability that a 

hypothesized property of the data is due to chance, and to estimate the magnitude of the 

hypothesized effect.

* Acknowledgements: Thanks to all those who provided the data analyzed in this chapter, 
especially Miriam Meyerhoff, Lynn Clark, Dominic Watt, David Bowie, Douglas Bigham, and 
Lars Hinrichs. We would also like to thank Douglas Bates and other members of the R-sig-ME 
mailing list for their wisdom.



These inferential techniques are only as valid as the assumptions it makes about the real-

world processes generating the observations. This chapter compares inferential methods 

appropriate for sociolinguistic data in terms of these assumptions.

The elements of quantitative analysis

The sample. The data under investigation is necessarily finite. If it comes from the spontaneous 

speech of a speech community, a single interview comprises only a tiny fraction of any speaker's 

lifetime of language, and there are usually many more speakers who could have been 

interviewed but were not; the same concerns apply to experimental data gathering, where there 

are always more possible subjects to run and stimuli to present. Inferential statistics uses the 

finite sample gathered by the researcher to generate a model of the population of all relevant 

linguistic behavior in a speech community. 

Hypothesis testing. Because of the variable nature of linguistic phenomena, it is always possible 

that the sample differs quantitatively from the population, even under careful random sampling. 

The sociolinguist seeks to infer whether the patterns observed in the sample are likely to 

generalize to the population, but the women in a sample, for instance, may not be representative 

of the women in the population. The possibility that a pattern, usually an observed difference, in 

the sample does extend to the population is called the alternative hypothesis, whereas the 

opposing view that there is no real difference to be discovered in the population is the null 

hypothesis. For example, if a sociolinguist is interested in the association between gender and 

speech rate, then the null hypothesis is that speech rate is constant across genders, and the 

alternative hypothesis is that the speech rate differs between the populations. Inferential methods 

provide a way to summarize the sample data as a test statistic (e.g., a Z-score, t-statistic, F-



statistic, or chi-square statistic), then compute the probability, henceforth the p-value, that a test 

statistic as large or larger would have occurred under the null hypothesis (i.e., no difference in 

the population).

Although this threshold is arbitrary, a result where p < 0.05 is generally labeled 

statistically significant in the social sciences, meaning that the null hypothesis is rejected. When 

comparing two sample means, p < 0.05 indicates that a difference of such size and consistency 

would be observed in no more than 5 percent of samples if it were actually spurious with respect 

to the population.1 In the example above, the alternative hypothesis only requires that there be 

some difference between groups, but in practice it is common to use the difference estimated 

from the sample as a measure of the population-level difference.

This notion of statistical significance, since it is sensitive to the amount of data as much 

as to the magnitude of the effect, does not always mean the result should be of interest, as the 

label “significant” might suggest. Researchers who discover a large effect which falls short of 

the significance threshold may modify the alternative hypothesis for later statistical testing, or 

they may choose to forgo further investigation of an effect which is statistically significant but 

which has a vanishingly small effect on the outcomes.

Some frequently-violated assumptions. 

An inferential statistical model relies on a set of assumptions that allow the researcher, generally 

with help from a computer, to calculate a test statistic and p-value from a set of data; the 

responsibility of making assumptions that are appropriate for the data falls to the researcher.

The random sample. In sociolinguistic studies, the contents of the sample are shaped by 

1 In this chapter, we use p-values to report the “exact level of significance” (Gigerenzer, Krauss, 
& Vitouch 2004), and thus do not limit ourselves to statements like “p < 0.05”. 



convenience factors, such as speakers' willingness to be interviewed or participate in an 

experiment. When the presence or absence of a particular type of speaker or subject is correlated 

with some other factor of interest--for instance, a researcher interested in stigmatized speech may 

unfortunately discover that low-prestige speakers are the least likely to agree to an interview with 

a stranger--then the sample will not provide a good estimate of the rate at which the stigmatized 

variant is used in the speech community. If such information is desired, the researcher may 

deploy proportional stratified sampling (e.g., Cedergren 1973); if the population consists of 

middle class speakers, who account for 25% of the population, and working class speakers, 

accounting for the remaining 75%, the researcher ensures that this 1:3 ratio of middle to working 

class speakers (and tokens) is also found in the sample. 

The omitted variable problem. No one predictor is ever sufficient to fully determine all the 

variation observed in a language sample (Bayley 2002: 118). While it is in some sense 

impossible to include every predictor that might be relevant to the outcomes of interest, a 

statistical model is of little use for inferring a causal connection between predictors and 

outcomes if one or more important predictors have been omitted. For instance, consider a study 

which attempts to assess the relative influences of grammatical category and phonological 

context on a variable process of consonant deletion. If the researcher tests the grammatical 

category and phonological context separately, and finds that both are significant, it does not 

entail that these two predictors are independently affecting rate of deletion. 

Regression models, discussed below, are perpetually popular tools in sociolinguistics 

because they provide an easy way to control for this effect by specifying multiple predictors for a 

model. It is common to find that two predictors are both significant predictors of the outcome by 



themselves, but when they are combined in the same regression model, only one of the two (e.g., 

phonological context) is significant (e.g., Tagliamonte & Temple 2005); the other predictor (e.g., 

grammatical category) is said to have been suppressed. Such a situation could arise if the two 

predictors are correlated, for example, if certain grammatical categories tend to co-occur with 

certain phonological contexts (e.g., Bybee 2002: 275f.), but grammatical category itself has no 

effect on the rate of deletion.

Multicollinearity of predictors. It may however be the case that multiple predictors stand in a 

causal relationship with the outcome (e.g., both phonological context and grammatical category 

increase rate of deletion), and this must be distinguished from the above scenario. Unfortunately, 

carelessly including every available predictor is not a helpful for drawing this distinction. 

Multivariate statistical methods assume that the predictors are “orthogonal”, i.e. fully 

independent of each other. The parameters of a model that includes multicollinear (i.e., strongly 

non-orthogonal) predictors are highly unstable and greatly influenced by small fluctuations in the 

data. Gorman (2010) gives an example of a spurious sociolinguistic finding due to 

multicollinearity between measures of socioeconomic status, and demonstrates the method of 

residualization, one way to eliminate multicollinearity among predictors.

Independence of outcomes. Ordinary regression models make a strong assumption that once the 

predictors are taken into account, the outcomes themselves are mutually independent. Since it is 

standard, both in the field and the laboratory, to gather many data points from each speaker or 

subject, this assumption is frequently violated in practice.

The question of whether an effect of gender in the sample is generalizable to the 

population is potentially of great sociolinguistic interest. To determine this fact, it is necessary to 



distinguish between a gender effect in the population and the presence in the sample of a few 

speakers who just happen to be male and furthermore are “outliers” from the rest of the sample; 

erroneously rejecting the null hypothesis in this latter case is known as Type I error. These two 

possibilities cannot easily be teased apart unless the effects of gender and speaker can be 

modeled simultaneously. 

Insofar as speakers belonging to the same speech community may differ in the rates at 

which they use different variants, even after gender, age, and social status are taken into account 

 (Guy 1980, 1991: 5), speaker identity is a strong predictor of linguistic behavior, one that is 

desirable to model. Yet, all tokens of a single speaker collected at a single time are also tokens of 

the same gender, etc.: every token from “Celeste S.” also has the same value for the gender 

predictor (“female”), age (45), etc., and thus these other predictors nest speaker identity. Random 

effects, described below, provide a principled solution to the problems created by this nesting, 

without giving rise to multicollinearity.

Dichotomization and categorization. It is all too frequent that a researcher gathers observations--

whether predictors or outcomes--on a continuous or integer scale, but converts these values to a 

few-valued (often binary) coding before performing statistical analysis. While there is 

occasionally a good reason to treat data that are naturally many-valued as a few-valued scale,2 it 

increases the chance of Type II error, the error of failing to reject the null hypothesis in the case 

2 One such case was brought to our attention by Bob Bayley. Lucas, Bayley, & Valli (2001), in a 
large-scale survey of variation in American Sign Language (ASL), translate the age of a signer 
into a three-level predictor, under the reasonable hypothesis that the true relevance of age to 
variation in their population is that informants of different ages encountered different 
administrative policies towards ASL in the classroom. Recent work by these authors and 
collaborators (McCaskill, Lucas, Bayley, & Hill 2011), which focuses on ASL in the African-
American community, groups signers into those who attended school before and after mandatory 
integration of the U.S. school system.



when this null hypothesis is in fact false (Cohen 1983). If a research posits a sound change in 

progress in a speech community, then a 78-year-old speaker should be less advanced with 

respect to this change than a 60-year-old speaker, but if these two speakers are placed together 

into the “60 years of age and older” bin, this trend is treated as noise rather than being credited to 

the   alternative hypothesis of an age effect. 

This example highlights another point: binning usually requires the researcher to 

arbitrarily choose the number and location of the cutpoint(s) between bins, and these decisions 

have unpredictable effects on the results that obtain. One reason this binning is so commonly 

seen in sociolinguistics is the “founder effect” of VARBRUL and its descendants, which require 

both outcomes and predictors to be categorical. However, it is incorrect to assume that 

VARBRUL's feature set delimits the set of possible sociolinguistic analyses, and the use of 

continuous predictors and/or outcomes in sociolinguistics date back at least as far as Lennig’s 

1978 study of variation in the Parisian vowel system.

Another reason that some researchers are willing to bin continuous data is that the most 

basic use of a continuous predictor in regression assumes that the predictor and the outcome 

stand in a relationship that is monotonic, and more specifically linear. A clear example of a 

relationship that violates this assumption is the one that holds between the use of stable 

sociolinguistic variables and social class, which a number of studies have found to be curvilinear, 

with interior social classes using the highest rates of a non-standard variant of a stable linguistic 

variable (Labov 2001: 31f.). In such cases, the appropriate response to this problem, though, is 

not ad hoc dichotomization, but rather for the researcher to explore the relationships observed in 

the data (e.g., by plotting the predictor and outcome), and choosing appropriate transformations 



of the data so that the linearity assumption is satisfied. 

In many cases, the hypothesis under consideration will determine an appropriate 

transformation. For example, the exemplar theory of lenition (e.g., Bybee 2002) predicts a 

relationship between the logarithm of word frequency and the rate of lenition, and thus a 

researcher who wishes to evaluate this hypothesis must convert word frequency to a log scale 

before modeling. Harrell (2001: 16-26) provides a useful discussion of transformations for 

regression modeling. 

Summary

Inferential analysis allows for hypothesis testing, but there are many common pitfalls. The rest of 

the chapter outlines what we consider the best practices for analyzing the most common types of 

sociolinguistic data. Section 2 describes the analysis of binary categorical variables. Section 3 

expands these techniques to multinomial outcomes, categorical variables with more than two 

values. In Section 4, methods for continuous outcomes are considered, with a focus on acoustic 

measurements of vowels. The concluding section discusses some recent trends in the field of 

statistics of relevance to sociolinguists.

Methods for Binary Variables

Interpreting cross-tabulations

Many quantitative sociolinguistic studies compare two distinct, discrete, semantically-equivalent 

variants in complementary distribution. 

The chi-square distribution. In November 1962, William Labov elicited tokens of the phrase 

“fourth floor” from employees in three Manhattan department stores for the purpose of studying 

the social distribution of post-vocalic r in New York City. While this original study (Labov 



2006: chapter 4), first published in 1966, does not include any inferential statistics, the cross-

tabulation of the data (e.g., r-full vs. r-less tokens by store) lends itself to a simple statistical test. 

Consider the null hypothesis that there are no differences between the employees of the three 

department stores, chosen to represent the class spectrum in New York. The employees at 

middle-class Macy’s pronounce post-vocalic r in 125 tokens, and do not in 211 tokens; r is 

present 37% of the time (= 125/336). At working-class department store S. Klein’s, employees 

only have 21 tokens of post-vocalic r and 195 tokens where it is not realized, for a 10% rate of r 

presence. Saks, the department store representing the upper class, has a 48% rate of r presence. 

To compute the probability this effect is due to chance, these counts  are used to compute a test 

statistic called Pearson’s chi-square: the value obtained is 73.365. We then compute the 

probability of a test-statistic of this size or larger being obtained for a sample of this size simply 

by chance using the two-tailed chi-square distribution. The p-value representing this possibility 

is p = 1.1e-16, indicating that there is good reason to reject the null hypothesis that there are no 

differences in the r-realization among the different department stores, and the average rates of r 

presence calculated above indicate that presence of r increases as one ascends the class spectrum. 

Fisher's exact test. The chi-square test is not very appropriate for small amounts of data, since it 

is based on an approximation that is exactly true under the obviously false assumption that the 

data set is infinitely large; the accuracy of this test is worse as the sample grows smaller. For this 

reason, we favor a related technique known as Fisher’s exact test, which computes the “exact” 

(i.e., correct) p-value even for small data sets. As is sometimes the case, the Fisher p-value is 

somewhat smaller than the Pearson chi-square p-value (p = 1.4e-18), but it is always more 

precise. The Fisher p-value is often difficult to compute by hand, but since it can be computed 



for huge data sets by a modern computer in the blink of an eye, it is always be used in favor of 

the chi-square test. Table 11.1 shows the results of applying the chi-square and exact test to two 

other contrasts in Labov's data. First, Labov feigned misunderstanding after the first “fourth 

floor”, usually causing the speaker to repeat him- or herself, to obtain more data in a more 

careful style. Secondly, Labov recorded whether each token comes from “fourth” or “floor”. 

These results are summarized in Table 11.1; word and department store are significant 

predictors, but the repetition contrast is not. 

INSERT TABLE 11.1 ABOUT HERE

Simple logistic regression

Because of the potential for omitted variable bias discussed above, it is preferable whenever 

possible to consider the relative contributions of multiple predictors in a single model. While the 

department store data is relatively balanced, the p-values obtained from using a univariate 

method like the Fisher exact test may be inaccurate when this is not the case. Logistic regression, 

which predicts binary outcome using one or more independent predictor(s), and which will be 

familiar to many readers as the model underlying VARBRUL software, is the appropriate model 

in this case.

What to include. In the logistic regression model, the outcome is either r or zero; the predictors, 

all categorical, are word (“fourth vs. “floor”), repetition (first vs. second), and store (Saks vs. 

Macy’s vs. Klein’s).3 Modern regression software also allows the user to include what are 

3 In an ordinary linear or logistic regression model (ignoring any interaction terms), each 
continuous predictor has only one coefficient, which is the estimated effect of a one-unit increase 
in that predictor. For a categorical predictor with k levels, there are k - 1 independent 
coefficients, so a binary predictor has one, a three-level predictor has two, and so on. There are 
several ways to assign meaning to these contrasts. Like VARBRUL and ANOVA, this chapter 
uses sum contrasts, where each level has a coefficient representing its effect compared to the 
mean of all the levels. (The last level's coefficient is not an independent parameter reported by 



generally called interaction effects, predictors which are derived from the combinations of other 

predictors. In this case, an interaction between word and store allows the researcher to probe 

whether, in addition to any differences between “fourth” and “floor”, and the different 

department stores, if there is any difference in the difference between “fourth” and “floor” across 

the different department stores. For example, is “fourth” vs. “floor” at Saks different from 

“fourth” vs. “floor” at Klein’s? There is no obvious reason to hypothesize such an interaction in 

this case, but it is included for the purpose of demonstration. The results from fitting this model, 

which reports numbers in a form which will be familiar both to users of VARBRUL and other 

software packages (who may know log-odds as betas, coefficients, or estimates) are given in 

Table 11.2.

INSERT TABLE 11.2 ABOUT HERE

In this model, absence of r is treated as rule application, so an increase in the log-odds or 

the weights indicates fewer r's. Just as was the case for the univariate tests above, there is strong 

support for differences between stores and the two words. The effect of repetition is approaching 

significance, with the second repetition being more likely to contain an overt r than the first, but 

is just short of the standard threshold of 0.05. Among the interaction terms, which taken together 

are non-significant, there is one suggestive trend: “fourth” has more r than “floor” at S. Klein’s, 

but the pattern is reversed at the other two department stores. 

This raises an important question: how does one decide which predictors to include and 

which to omit? A useful procedure, adapted from Gelman and Hill (2007: 69), is as follows. The 

initial model should include any predictors the experimenter has recorded and thinks might 

the software, but is always the sum of the other coefficients subtracted from zero.) Another 
commonly encountered coding is treatment contrasts, where one level is chosen as a baseline set 
to zero, and the coefficients represent the effect of the other levels compared to this baseline.



influence the outcomes. After the model is fit, the predictors are assessed in the following 

manner: 

1. If a predictor is not statistically significant, but the estimate (or factor weight) goes in the 

expected direction, leave it in the model.

2. If a predictor is not statistically significant, and the estimate goes in an unexpected direction, 

consider removing it from the model.

3. If a predictor is statistically significant, but the estimate goes in an unexpected direction, 

reconsider the hypothesis and consider more data and input variables.

4. If a predictor is statistically significant, and the estimate goes in the expected direction, leave 

it in the model.

The resulting regression model supports the Fisher exact test observations in the sense 

that the same predictors are significant, but we see that the department store p-value is now even 

smaller. Indeed, in the absence of associations, the p-value of a given variable usually becomes 

smaller when other relevant predictors are taken into account.

On stepwise techniques. This technique of allowing prior assumptions to guide variable 

selection, and potentially reporting non-significant effects, contrasts with the use of automated 

stepwise model selection techniques, such as is found in VARBRUL, that may be familiar to 

many sociolinguists, but which are the target of derision by many statisticians (e.g., Harrell 2001: 

56, 79f.). Step-up procedures are subject to the problem of omitted variable bias discussed above. 

Step-down procedures do not suffer from this problem, as they begin with a full model 

(containing all the predictors), but there is no compelling reason the researcher shouldn't stop 

there. If a predictor actually has a small effect, it is beneficial, and if it does not, it does no harm. 



In contrast, the coefficients of any marginally significant predictor that are retained by stepwise 

methods are biased upwards in comparison. 

Nesting and regression. The previous model measured a sociolinguistic variable’s distribution 

according to department store, the grammar-internal effects of different phonological context 

(“fourth” vs. “floor”), and contrasts with respect to style (repetition). Since there are no more 

than four tokens per speaker, and 264 speakers in the sample, there is no reason to believe that 

some speaker outlier is driving the trend; even if some speakers in this sample do differ 

drastically from the rest of the population in their usage of /r/, one can no more detect these 

outliers in this data than one could reasonably assess whether a coin is or is not fair after flipping 

it only four times, since the outcome will be all heads or all tails 12.5% of the time for even a 

perfectly fair coin. 

As mentioned above, it is generally understood that speakers may differ from each other in 

their overall rates of usage of different variants. What has not been as widely acknowledged is 

that this means when there are many tokens per speaker in the sample, that the differences 

between speakers must be modeled in order to satisfy the assumption of independent outcomes 

(see above). As already mentioned, the above fixed-effects logistic regression models do not 

provide any appropriate solution to the nesting between speaker and other demographic factors. 

One method to deal with this problem is to compute separate models by speaker, and then 

perform inference over the coefficients of the individual models (e.g. Gelman & Hill 2007: 

chapter 12; Rousseau & Sankoff 1978, Guy 1980), but this does not allow us to constrain 

speakers from the same speech community to behave the same with respect to grammatical 

constraints on variation, despite our strong bias that speakers from the same community share 



these constraints (Guy 1980). 

Mixed-effects regression

Mixed-effects models (Pinheiro & Bates 2001) are a recent innovation in regression which allow 

for, in addition to the familiar stratum of fixed-effects predictors, a set of predictors called 

random effects providing a natural solution to the nesting problem. An advantage of the mixed-

effects model is that in most cases it returns more accurate p-values compared to a fixed-effects 

model that ignores nesting.

Random intercepts. The simplest type of mixed-effects model augments a standard regression 

with a random intercept, which is a predictor consisting of many levels (such as unique 

identifiers for the different speakers in the sample). During model fitting, the variance 

attributable to different levels of the random intercept is estimated, and each level of the random-

effects predictor is mapped onto this normal distribution in a way that preserves the essential 

insight that speakers are otherwise the same.  This is particularly useful for measuring the 

differences between speakers when a researcher is interested in social factors like gender or 

ethnicity in a nesting relationship with speaker identity. 

Another application of random intercepts is to model word-level effects. One may have a 

null hypothesis that once phonological context, grammatical effects, etc., are controlled for, there 

is no effect of word identity on sociophonetic variables, but there are many reports of purely 

lexical effects in variation (e.g., Neu 1980: 50). However, words and grammatical category, etc., 

may be in a nesting relationship, making word identity a good candidate for a random intercept. 

An advantage of the mixed-effects model is that in many cases, it returns reduced, and 

more accurate, significance levels (i.e., smaller p-values) compared to a fixed-effects model that 



ignores by-subject and by-word grouping. This can be illustrated using data on the English of 

adolescent Polish immigrants in the United Kingdom collected by Schleef, Clark, & Meyerhoff 

(2011); here, the focus is a subset of their sample gathered in London. The data consists of 925 

tokens of the variable (ing) from 21 speakers and representing 123 word types. This variable 

concerns the realization of the final consonant in word-final <ing> sequences. In addition to the 

velar nasal and coronal nasal articulations included here, the data also contains a third category, 

where the variable is realized with an oral velar stop (e.g., [iŋk]). Henceforth, this final variant is 

ignored, leaving 718 tokens from 21 speakers.

Despite the modest size of the data set, a fixed-effects regression identifies three 

significant between-word predictors (preceding phonological segment, grammatical category, 

and lexical frequency) and three significant between-speaker predictors (gender, English 

proficiency level, and friendship network), summarized in Table 11.3. The fixed-effects method 

finds all six of these predictors highly significant (all p < 0.001). One surprising effect is while 

that a higher degree of  English proficiency results in a higher rate of the coronal variant, 

speakers with a mostly Polish friendship network are also more likely to use the coronal variant 

than those with a mixed or mainly English network. One might have expected that both these 

predictors were imperfect measures of the speaker's contact with first-language English, and thus 

would pattern together.4

The effect of the remaining between-speaker predictor, gender, is also surprising. 

Whereas men generally use more of a stigmatized variant than women (Labov 2001: 264), Polish 

4  It may seem that the coronal variant is contact induced, but closer consideration suggests the 
same may be true for the velar variant. In both English (see Borowksy 1986:65f. and citations 
therein) and Polish, the velar nasal is generally considered a pure allophone of /n/, but Schleef et 
al. note that the two languages differ in their realizations of word-final /ng/: [ŋ] in standard 
English, but in Polish, [ŋg].



women (22% coronal tokens from twelve females) favor the stigmatized coronal variant more 

than men (9% coronal tokens from nine men). While this different in rate is somewhat small in 

absolute terms, the fixed-effects model treats gender as significant (p = 0.015). 

The addition of random intercepts for speaker and lexical item results in somewhat 

different patterns of significance. All three of the between-word predictors are still found to be 

significant (the reported significance levels are now roughly p = 0.001 instead of several orders 

of magnitude smaller), indicating that the effects are unlikely to be due only to properties of 

individual words in the sample. However, as shown in Table 11.3, none of the three between-

speaker predictors reaches significance, and one cannot reject the null hypothesis that they have 

no effect on (ing).

INSERT TABLE 11.3 ABOUT HERE

Random slopes. Whereas the random intercepts used above adjust the model’s predictions for 

any speaker or word, mixed-effects models can also include random slopes. These can be used, 

for example, to allow speakers not only to differ in the rate at which they use a variant, but also 

to differ in the size of the effect of between-word constraints such as phonological context. 

While there may be a null hypothesis that such differences are not present in the speech 

community once per-speaker intercepts are properly accounted for, mixed-effects models are 

capable of testing this null hypothesis without elevating it to the level of a potentially-dangerous 

assumption. Random intercepts and slopes are of particular use for modeling the results of 

laboratory experiments where subjects, stimuli, and conditions may all interact (e.g., Baayen, 

Davidson, & Bates 2008, Gorman 2009).

Summary



This section has described the application of univariate and multivariate techniques to modeling 

the predictors of the classic variety of sociolinguistic variable, binary outcomes in 

complementary distribution. 

Methods for Multinomial Variables

For binary outcomes, logistic regression is the tool of choice. However, a sociolinguistic variable 

may be categorical, but have more than two variants in competition, as is the case with many 

consonantal variables. In some cases, a prior theory of the variable may make it reasonable to 

model these alternatives with separate binary logistic regressions. However, if the hierarchical 

structure of the variable is not absolutely clear, then the appropriate tool is multinomial logistic 

regression. In its most common implementation, this method does nothing more than fit multiple 

logistic models to the data simultaneously. However, if there is a natural ordering to the variants, 

and additional assumptions are reasonable, it is possible to fit a more constrained (and thus more 

powerful) model, ordinal logistic regression.

To illustrate these assumptions, we consider 8071 tokens of r in syllable codas, gathered 

in Gretna, Scotland, one of the four communities investigated by the Accent and Identity on the 

Scottish-English Border (AISEB) project (Llamas 2010). The quality of the r sound was given a 

narrow transcription, but here we collapse the observations into three categories: taps/trills, 

approximants, and zero.5 Since post-vocalic r is disappearing in apparent time in Gretna--moving 

away from a Scottish standard and towards an English one--the change can be thought of as a 

lenition process with a natural ordering: tap/trills > approximants > zero, and thus a candidate for 

5 The models presented in this section depend on having data on the level of the observation, 
making it possible to control for any grammatical predictors on opposing variants. If all that is 
available is the percentages of variants used by each speaker, an appropriate method is 
compositional data analysis (Aitchison 2003).



ordinal logistic regression. 

To check the assumptions of a proportional odds ordinal logistic regression model, an 

unordered multinomial logistic regression is applied to the data. This model includes three binary 

external predictors: age group (older, 57-82, vs. younger, 15-27), gender (female vs. male), and 

social class (middle class vs. working class). The 40 Gretna speakers are a balanced sample of 

these external predictors, with five speakers belonging to each of the eight combinations of these 

three external predictors. Internal predictors relating to syllable stress, speech style, and the 

identity of the preceding and following segments are also included. These are nuisance 

variables, meaning that we wish to control for their effects to prevent omitted variable bias, but 

they are not the focus of this investigation and their effects will not be discussed below. For the 

three external predictors, the multinomial regression produces two intercepts and six coefficients. 

Since each speaker in the sample produces many tokens, a mixed effects model with a per-

subject intercept would be ideal, but at the time of writing we are unaware of any software that 

fully supports mixed effects multinomial models. For this reason, Table 11.4 reports the log-

odds, but not the potentially-misleading p-values. 

The three-valued outcome has one baseline category, here the most conservative variant: 

taps/trills. Each predictor is associated with two coefficients, one for approximants, and one for 

zeros. The first coefficient, for approximants, represents the estimated adjustment, in that 

environment, to the log-odds of an approximant occurring instead of a tap or trill. The coefficient 

for zero represents the adjustment to the log-odds of a zero occurring instead of a tap or trill.

INSERT TABLE 11.4 ABOUT HERE

The model output contains two intercept terms, 2.601 for approximants and 3.209 for 



zeros. The numbers are related to the raw proportions of the response categories--6.3% taps/trills, 

33.3% approximants, and 60.3% zero--but adjusted to represent the mean over all the possible 

cells formed by the predictor variables.

The two coefficients for female gender, 0.457 for approximants and 0.502 for zeros, 

indicate that these two variants are approximately equally favored by females as opposed to 

taps/trills. A cross-tabulation shows the same fact: overall, females produced only 4.3% 

taps/trills while males produced 8.4%. (Note that gender has little effect on the contrast between 

approximants and zeros, a fact which is important below.) 

The coefficients for the younger age group, 0.605 for approximants, and 1.377 for zeros, 

indicate that younger speakers favor approximants over taps/trills even more than older speakers 

do, and that younger speakers favor zeros over taps/trills much more than older speakers do. The 

coefficients for social class show only a small effect in the expected direction: the middle class 

favors more advanced, lenited forms, while the working class preserves more traditional variants.

Some of the coefficients of this model suggest the data does not satisfy the proportional 

odds assumption of the ordinal logistic regression model. The ordinal regression divides the 

three-outcome variation into two cut-points: taps/trills vs. {approximants, zeros} and {taps/trills, 

approximants} vs. zeros. An ordinal model with proportional odds assumes that the predictors 

affect both of these cut-points identically, so there will be only one coefficient for each binary 

predictor, rather than k - 1 for k response categories, as in the unordered multinomial model.

Under proportional odds, the difference between male and female speakers must have the 

same effect at the two cut points, but this is not the case here: speakers' gender has quite an effect 

on “first step” of lenition, from taps/trills to one of the other categories, but has little effect at the 



“second step”, from one of the first two categories to zeros. At the first cut-point, we see 174 

taps/trills vs. 3894 approximants/zeros for women, and 338 taps/trills vs. 3665 

approximants/zeros for men. Women favor the more lenited variants by 95.7% to 91.6%, a 

difference of 0.725 log-odds. At the second cut-point, there are 1569 taps/trills/approximants vs. 

2499 zeroes for women, and 1634 taps/trills/approximants vs. 2369 zeroes for men. Here women 

favor the more lenited variant by 61.4% to 59.2%, a difference of only 0.094 log-odds. The 

proportional odds assumption does not hold with respect to gender.

For this reason, it would be inappropriate to force the Gretna post-vocalic r data into a 

proportional odds ordinal regression, although this does not indicate that the three variants are 

truly unordered, or that the two different stages of lenition are independent phenomena.  

Ordinal logistic regression is better suited to model data on /ay/-diphthongization in 

Waldorf, Maryland reported by Bowie (2001). This data set, consisting of 4038 tokens collected 

from 25 speakers, was originally coded with a three-way response variable: “monophthong” 

(9.8%) vs. “weak glide” (12.9%) vs. “full glide” (77.3%). However, the distinction was collapsed 

into a binary one--monophthong vs. diphthong (i.e., weak and full glide tokens)--before 

multivariate analysis, because the distinction between weak and full diphthongs was “not found 

to produce meaningful results” (p. 342). 

Bowie (2001) provides a full discussion of all the predictors analyzed, including stress, 

style, following phonological environment, and syntactic environment, but here, the focus is on 

two external predictors, age and gender. There is a clear effect of age, with younger speakers 

favoring the diphthong consistently more over the decades, and similarly, females lead in the use 

of the standard (diphthongal) variant. Under the hypothesis that this is an ordered process--



monophthong > weak glide > full glide--then the two-way choice analyzed in Bowie (2001) is 

the first cut-point of an ordinal regression. The second cut-point separates monophthongs and 

weak diphthongs, on the one hand, from full diphthongs on the other. We first validate the 

proportional odds assumption with an unordered multinomial regression model, and find that 

age and gender affect both steps of diphthongization process to a similar degree, in contrast to 

what was observed in the Gretna sample. There are also formal tests for validating a proportional 

odds assumption, but Harrell (2001: 335) reports that these tests too-frequently reject the null 

hypothesis of proportional odds, and thus an informal approach is sufficient. We then fit an 

ordered multinomial model to the data; the between-speaker results are summarized in Table 

11.5. The results suggests that the weak/full glide distinction is indeed meaningful in this data. 

This is expected if monophthongization proceeds gradually, and what were recorded as weak and 

full glides are not natural categories but rather a useful categorization assigned to a continuous 

variable, such as glide length. 

INSERT TABLE 11.5 ABOUT HERE

If one is dealing with an ordered response and the data conforms to the proportional odds 

assumption, there are two main advantages to using an ordinal method. First, the coefficient 

estimates should be more accurate in the sense that the model will better describe the underlying 

population, and be more useful for the prediction of future data. The second advantage to an 

ordinal method is that is it lowers the likelihood of Type II error (failing to reject a null 

hypothesis when the alternative hypothesis is true), while avoiding the problems inherent  in 

making multiple comparisons over the results of separate binary regressions. If we have reason 

to believe that a multiple-variant outcome reflects an underlying ordering, then some form of 



ordinal modeling is desirable.

Methods for Continuous Variables

Often the variables of interest can be measured on a continuous scale, such as acoustic measures 

extracted from a recorded speech signal. This section compares several modern methods used to 

study continuous outcomes. The methods described are used here to study vowel formants in the 

F1 x F2 space, but such techniques apply naturally to continuous outcomes of other types. 

Bigham, White-Sustaíta, & Hinrichs (2009) administered word lists to 52 Anglo-

American, Mexican-American, and African-American speakers in Austin, TX; here we look at 

paired tokens of bot and bought, and hod and hawed. Bot and hod represent a vowel (written 

LOT, following Wells 1982) that is etymologically distinct from the vowel of bought and hawed 

(written THOUGHT), but these vowel classes have merged or are in the process of merging for 

many North American English speakers. 

Simple two-sample tests. 

These two-sample tests are univariate methods that can be used to test the null hypothesis that 

the two etymological classes are acoustically identical at the population level. 

The t-test. The t-test is a class of methods for testing the null hypothesis that two subsamples 

have identical means. These samples can either be paired, in which case each observation from 

one subsample stands in a one-to-one relationship with an observation from the other subsample, 

or unpaired, when this does not hold. The Bigham et al. data consists strictly of minimal pairs, so 

it is natural to pair tokens of hod  and hawed, and bot and bought, respectively. Even when the 

pairing requires the researcher to exclude words which are not one part of a minimal pair, Herold 

(1990: 73) and Johnson (2010: 108) argue that unpaired t-tests are a poor tool for quantifying 



merger, since the tests frequently result in assigning a significant effect for vowel class even to 

speakers who are judged by the researcher to be merged in production. This is likely caused by 

the omission of phonological context, which happens to be associated with vowel class 

membership.

Variance (equal to the standard deviation squared) is a standard measure of how far away 

individual values in a sample or population are from the mean. When two subsamples have the 

same variance, they are said to be homoscedastic, and heteroscedastic otherwise. For this data, 

the assumption of homoscedasticity is not strictly true: THOUGHT has lower variance for both 

F1 and F2. Heteroscedasticity between two vowel classes undergoing merger has been observed 

in other studies (e.g. Johnson 2010: 113, 128); this may indicate that the speaker is style-shifting 

towards, or away from, merger. The unequal-variance varieties of the t-test, which do not 

assume homoscedasticity, are the default choice for most tasks and it is this type that is used 

here. The results for the two formants find a difference in F1 (p = 0.0024) and in F2 (p = 1.9e-

05), and inspection of the means and medians shows that LOT is lower and more front than 

THOUGHT. 

The Wilcoxon test. The t-test used above does not assume the classes share the same degree of 

variance, but it does assume that the data is normally-distributed. Since this assumption is often 

violated in practice, it is often preferable to use the family of Wilcoxon tests, especially when 

communicating with other fields (such as other social sciences) where the t-test has been 

replaced by this family of tests, which are free of assumptions of homoscedasticity or normally 

distributed data. Whereas the t-tests compare means, and therefore can be greatly influenced by 

outlying data points, the Wilcoxon tests focus on medians, for which the influence of outliers is 



minimal. The test used here, the Wilcoxon signed rank test, evaluates the null hypothesis that the 

paired sets of vowels have the same median formant values; the p-value for F1 (p = 0.0019), and 

and F2 (p = 8.7e-05) are now somewhat smaller.

Tests with multiple predictors. 

Both the t-test and the Wilcoxon test found a significant difference between LOT and 

THOUGHT for F1 and F2. However, these univariate tests are of less use for looking at the 

demographic predictors of merger, since they only allow the data to be partitioned into two 

subsamples. In many cases, the data is unbalanced according to the various other predictors 

(because, for instance, it was collected from spontaneous speech), which means that a failure to 

control for demographic factors or grammatical factors can undermine the attempt to determine 

whether the two vowels are underlyingly different. 

Mixed-effect regression. Linear regression is the classic technique for one or more predictors of 

continuous outcomes; the most basic case is not illustrated here. Linear regression also permits 

random effects to be included as predictors. While linear regression by default assumes 

homoscedasticity between binary predictors, it is also possible to allow for heteroscedasticity 

between, for instance, the two vowel classes.

To compute such a model over the whole sample, F1 and/or F2 values are the outcomes, 

and  vowel class identity and the following consonant (/t/ or /d/) are the fixed effects. To these 

models it is possible to add in per-speaker predictors which address the role of ethnicity, gender, 

and age on participation in the merger; these three are treated as fixed-effects interactions with 

vowel class. These interaction terms are simply the “predictor” vectors derived from the 

combination of vowel class and ethnicity, so that the model estimates the effect of vowel class 



for the whole population, but also the effect of vowel class for each ethnic group. The final 

components to this model are per-speaker intercepts and a random-effect interaction (or random 

slope) between speaker and vowel identity. The former controls for physiological differences 

between speakers which influence formant measures (i.e., it is a form of normalization), and the 

latter allows speakers to differ on their participation in the merger. Table 11.6 reports the subset 

of the F2 model that pertains to age and ethnicity. The column marked “estimate” reports the 

predicted change in F2 in Hz.

INSERT TABLE 11.6 ABOUT HERE

The F2 model finds a small but significant difference between the F2 of LOT and 

THOUGHT; for Anglo speakers, the predicted size of the contrast is approximately 70 Hz. 

However, there is a strong interaction between vowel class and the other two ethnicities: 

African-American speakers have twice as large a contrast, whereas the contrast is almost 

completely neutralized for Mexican-American speakers. 

Tests for multivariate outcomes. 

So far, F1 and F2 have been treated separately, focusing on F2’s more robust separation of the 

vowel classes. Modeling the two formants separately makes the results difficult to interpret, 

since there may be some correlation between the two, especially near the bottom of the vowel 

space, where there are physiological constraints fronting or backing (and of course, F2 is defined 

in such a way that it is always greater than F1). Just as multiple predictors are needed to deal 

with complex causal structures, tests for multivariate outcomes are a necessity when the outcome 

itself exists on more than one dimension. The designs considered in this section all convert the 

data into a per-speaker measure of the separation between the two vowel classes.



Euclidean distance. One way to compute a distance between two vowel classes is to compute the 

Euclidean (or Cartesian, or Pythagorean) distance (e.g., Gordon et al. 2004: 145). This is simply 

the length that would be obtained by measuring the distance between two points in F1 x F2 plane 

with a ruler. The Euclidean distance between the points is given by the Pythagorean theorem: it 

is the square root of the sum of two quantities, the squared difference in mean F1 and the squared 

difference in mean F2. While this measure is intuitive, there are potential problems with it.  First, 

the relative contribution of F1 and F2 to the ultimate distance measure is fixed to be equal, which 

may be undesirable when one of the acoustic measures has a larger range or different variance. 

Secondly, we have not addressed the possibility of correlations between F1 and F2; any 

correlative structure will be artificially inflated when they are combined in this fashion.

Multivariate analysis of variance. In a study of vowel merger, Hay, Warren, and Drager (2006) 

fit a type of multivariate outcome model called MANOVA to each speaker, using vowel class as 

the main predictor and F1 and F2 as outcomes. From these per-speaker models, Hay et al. 

compute a quantity called the Pillai score (or trace), which is simply the proportion of 

multivariate variance accounted for by the vowel class predictor. The Pillai score is near zero 

when there no variance is accounted for by vowel class, and if all variance is due to vowel class, 

the Pillai score is one. This method also controls for any correlation between F1 and F2. Figure 

11.2 plots the vowel-class medians of the two speakers in the Austin data with the highest, and 

lowest,, vowel-class Pillai scores. 

INSERT FIGURE 11.1 ABOUT HERE

As can be seen, the tokens of the low Pillai score speakers are not well-separated by vowel class, 

consistent with merger and their low score, and the speakers with the highest scores are well 



separated by vowel class, though these two speakers have very different acoustic targets.

Both Pillai score and Euclidean distance for the LOT ~ THOUGHT contrast as produced 

by the speakers in the Atlas of North American English (Labov, Ash, & Boberg 2006) is plotted 

in Figure 11.3. The speakers are plotted by region (with the exception of the five speakers from 

New York City), and the shapes indicate the interviewers' impressionistic coding of the degree to 

which the speaker was perceived to be merged. As can be seen, the two measures are highly 

correlated (Spearman rank correlation coefficient 0.961) in all nine regions. At least in this case 

the Pillai score and Euclidean distance metrics produce results so similar that they can be used 

interchangeably. The one caveat is that Pillai score may not be appropriate when the number of 

observations per speaker is very small. 

INSERT FIGURE 11.2 ABOUT HERE

Summary

Sociolinguists can deploy a rich variety of methods in the study of continuous outcomes, 

including paired univariate methods with and without the assumptions of heteroscedasticity and 

normality (t-tests and Wilcoxon tests), mixed-effect linear regression, and models for correlated 

multivariate outcomes (MANOVA). As always, it is crucial to attend to the assumptions inherent 

in statistical techniques. 

Conclusion

Having shown the effects that assumptions about the data make on the results of inferential 

analysis, the one assumption that remains to be considered is the frequentist paradigm itself.

A Bayes new world? Frequentism is the name given to the traditional approach to statistics that 

coalesced in the early 20th century around statisticians Egon Pearson, Ronald Fisher and their 



collaborators, and implicitly assumed above; it stands in contrast with a second paradigm known 

as Bayesianism, after 18th-century minister Thomas Bayes, which has coalesced only in the past 

few decades. Whereas frequentist analysis is concerned with the probability of rejecting a null 

hypothesis, the Bayesian approach focuses on the change in probability of a null hypothesis 

before and after performing data collection and statistical testing. The following example 

demonstrates this contrast. 

Frequentism and Friday effects. A sociolinguist's data collection is very much influenced by 

prior knowledge about the speech community, universals of language variation, and so on. The 

null hypotheses that are ultimately subject to testing are generally quite likely to be false; in 

Bayesian terms, the prior probability of the null hypothesis is quite low, and consequently its 

rejection is not a particular surprise. This logic has more interesting consequences when one 

considers a null hypothesis that is quite likely to be true, such as the hypothesis that New 

Yorkers produce the same rate of post-vocalic r on Fridays as during the rest of the week. 

However, if a statistical test reports a significant Friday effect (e.g., p = 0.03), frequentist 

principles require the researcher to take this result seriously, even in the absence of a mechanistic 

explanation for any component of this correlation.

However, the Bayesian theory has a different take on this kind of unlikely, but 

significant, result. It is only rational that to reject such a strongly-believed null hypothesis 

demands extraordinary evidence to cause us to shift our beliefs. Jeffreys (1939) describes a 

Bayesian method to integrate our prior beliefs about the non-existence of Friday effects with the 

result of the experiment. Before the experiment, the researcher must specify a prior probability of 

the null hypothesis. While Labov’s study of New York City post-vocalic r discussed above has 



several replications over the last half-century, none of the studies mention day-of-week effects, 

nor are they discussed in any sociolinguistic work of which we are aware. Given this, one might 

somewhat arbitrarily say that the prior probability of the null hypothesis is 0.99; i.e., it is unlikely 

that the null hypothesis is false and there really is a Friday effect. The posterior probability (i.e., 

the probability that the null hypothesis is true after the statistical test) is given by dividing the p-

value of the statistical test by the sum of the following two terms: the product of the  p-value and 

the prior probability, and the product of the one minus the p-value and one minus the prior. For 

this example, the  denominator is (0.03 x 0.99) + (0.97 x 0.01) = 0.039, and thus the posterior 

probability is 0.03 / 0.039 = 0.761. The change from the prior probability of 0.99 to the posterior 

of 0.7614 indicates that this single test has not deeply shaken the faith in the null hypothesis of 

no Friday effect. While sociolinguistics has not generally used such explicit computation of 

posterior probabilities, it seems unlikely a single Fridays effect paper would take the field by 

storm simply because of the a priori unlikeliness of such an effect. After all, events of 

probability 0.03 do occur by chance--3% of the time, to be precise--so a p-value of 0.03 should 

not lead to abject belief in the alternative hypothesis.

Proving the null. Conversely, when we apply statistical analysis under the frequentist approach 

and the data fails to provide strong evidence to reject a null hypothesis, it does not necessarily 

mean that the null hypothesis is true: the failure to reject the null hypothesis may be due to too 

little data or failing to control for nuisance variables, and it does not rule out the existence of 

some other alternative hypothesis which would result in rejection of the null. Bayesian statistical 

analysis tools allow the researcher to estimate whether the null is true (e.g., Gallistel 2009). The 

finding of a non-effect (like Fridays) or non-interaction (for instance, between style and internal 



constraints on variants, as proposed by Sankoff & Labov 1979) may itself be of considerable 

sociolinguistic import, and only Bayesian methods are capable of identifying them.

Against a statistical monoculture

The collaboration between statisticians and sociolinguists in the 1970s was a fruitful one, but 

advances in statistics since then have been slow to diffuse into sociolinguistic practice. Mixed-

effects models provide sociolinguists with an important new tool to excise the assumption that 

speakers or words, for instance, do not behave differently once appropriate demographic or 

grammatical constraints have been taken into account. While mixed-effects models provide a 

reasonable way to test this intuitively reasonable null hypothesis and identify when it is false, 

using fixed-effects models that fail to address these concerns elevates this null hypothesis to a 

dangerous assumption (Gorman 2009). 

Cross-fertilization. Sociolinguists have recently been availing themselves of some sophisticated 

psycholinguistic paradigms (Gooskens this volume, Loudermilk this volume), and the potential 

for collaboration is clear.  In psycholinguistics research, subject and word effects have been 

addressed for decades (e.g., Clark 1973), and the Journal of Memory and Language recently 

dedicated an issue (volume 59, #4) to best practices in statistical analysis which recommends 

mixed-effects models for these purposes. A shared statistical vocabulary will only strengthen the 

alliance between sociolinguists and psycholinguists (among other research communities). 

Some new tools. Sociolinguists have long benefited from free software packages like 

VARBRUL (and descendants like GoldVarb). In the past, those who wished to use other 

methods (such as more general regression models) had no choice but to pay large sums for 

proprietary statistical software. Sociolinguists can now avail themselves of a huge library of 



statistical methods using the free, cross-platform environment known as R, which has become 

the lingua franca for quantitative analysis of every stripe. R, of course, is capable of emulating 

the features of VARBRUL.6

Of course, there is a learning curve associated with a new statistical interface, and R is no 

exception. The second author is the creator of Rbrul (Johnson 2009), which provides a guided 

interface for regression modeling with random effects, continuous predictors and/or responses, 

and interactions, but this is only a stopgap measure, and researchers wishing to avail themselves 

of the full power of modern statistics will need the full power of modern statistical software. 

While this may seem daunting, it is important for sociolinguists to rise to the statistical 

challenges posed by their complex and meaningful data in furtherance of science. 
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Gorman & Johnson

Table 11.1. New York City department store (r) cross-tabulation, chi-square and Fisher exact test

# r # zero % r p-value 
(chi-square)

p-value 
(Fisher exact)

S. Klein's 21 195 9.7 1.2e-16 1.4e-18

Macy's 125 211 37.2

Saks 85 93 47.8

“fourth” 87 295 22.8 1.4e-07 1.2e-07

“floor” 143 204 41.2

first repetition 136 322 29.7 0.187 0.162

second repetition 94 177 34.7

Table 11.2. New York City department store (r) fixed effects logistic regression

log-odds weight p-value

(intercept) 0.910 0.713 8.3e-19

S. Klein's 1.304 0.787 1.2e-19

Macy's –0.428 0.395

Saks –0.875 0.294

“fourth” 0.444 0.609 8.2e-09

“floor” –0.444 0.391

first repetition 0.166 0.541 0.065

second repetition –0.166 0.459

S. Klein's and “fourth” –0.239 0.441 0.341

S. Klein's and “floor” 0.239 0.559

Macy's and “fourth” 0.061 0.515

Macy's and “floor” –0.061 0.485

Saks and “fourth” 0.177 0.544

Saks and “floor” –0.177 0.441
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Gorman & Johnson

Table 11.3. Polish English (ing) in London fixed-effects and mixed-effects logistic regression

fixed-effects model mixed-effects model

log-odds p-value log-odds p-value

(intercept) –2.828 4.7e-14 –3.106 8.1e-08

lexical frequency (log) 0.978 2.0e-08 1.215 3.29e-05

noun –0.532 6.3e-05 –0.716 0.004

verb 0.857 1.214

gerund 0.001 0.173

adjective 0.924 –1.204

preposition 0.198 0.158

discourse marker –1.446 –0.622

preceding apical consonant –0.530 1.7e-05 –0.592 7.7e-04

preceding dorsal consonant 1.002 1.215

other preceding consonant –0.472 –0.622

male –0.547 1.9e-04 –0.381 0.185

female 0.547 0.381

little English proficiency –0.187 1.5e-06 –0.132 0.260

good English proficiency –0.678 –0.584

very good English proficiency 0.865 0.717

mostly Polish friendship network 0.648 0.029 0.683 0.445

mixed friendship network 0.266 0.286

mostly English friendship network –0.914 –0.969
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Table 11.4. Gretna (r) unordered multinomial logistic regression (external effects only)

log-odds 
(approximant vs. tap/trill)

log-odds 
(zero vs. tap/trill)

(intercept) 2.601 3.209

younger 0.605 1.377

older –0.605 –1.377

male –0.457 –0.502

female 0.457 0.502

working class –0.024 –0.052

middle class 0.024 0.052

Table 11.5. Waldorf /ay/-monophthongization ordered multinomial logistic regression (external 
effects only)

log-odds 

Strong vs. weak glide/monophthong 1.323

Strong/weak glide vs. monophthong 2.579

male 0.336

female –0.336

born before 1920 1.858

born 1920-1939 0.371

born 1940-1949 0.366

born 1950-1959 –0.404

born 1960-1969 –0.412

born 1970-1979 –0.954

born after 1980 –0.825
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Table 11.6. Austin LOT/THOUGHT F2 heteroscedastic mixed-effects regression

estimate p-value

(intercept) 1216.47 2.2e-16

LOT 35.57 0.001

THOUGHT –35.57

male –74.56 3.6e-05

female 74.56

Anglo-American –0.69 0.773

African-American 11.21

Mexican-American –10.52

Anglo-American and LOT –0.71 0.011

Anglo-American and 
THOUGHT

0.71

African-American and LOT 35.40

African-American and 
THOUGHT

–35.40

Mexican-American and LOT –34.68

Mexican American and 
THOUGHT

34.68
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Figure 11.1. The two Austin speakers with the highest, and the lowest, Pillai scores for vowel 
class, respectively, and their vowel tokens in the F1 x F2 space
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Figure 11.2. North American English LOT/THOUGHT distance by region and speaker
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