Neural diacritization

1 Introduction

Many writing systems, both ancient and modern, systematically omit key information about the
pronunciation—and ultimately, the meaning—of words. Such writing systems are sometimes re-
ferred to as defective. In Arabic, for example, consonants and long vowels are written, but except
for pedagogical and religious materials, there is no way to indicate the presence of quality of short
vowels. Thus the word a4l [?al.ja.man] ‘Yemen’ is written with five consonant characters ('-1-
y-m-n) but no vowels. Similarly, in Latin, vowel length is contrastive—e.g., malus ‘bad’ vs. malus
‘apple tree’—but both words are written (MALVS) in Classical texts. Closely related issues arise
in the writing systems used for Hebrew, Hindi, French, and Punjabi, and Spanish, among oth-
ers [L-3]. Predicting or “filling in” the short vowels is not difficult for highly-literate readers of
Arabic, nor is predicting vowel length difficult for sophisticated scholars of Latin, but defective
scripts are quite difficult to read for young children and second language learners. Furthermore,
defective scripts are problematic for many speech and language processing technologies: they
make mapping from spelling to pronunciation—essential for speech technologies like automatic
speech recognition [4, 5]—much more challenging, and they adversely impact the performance of
text processing and understanding systems [6, 7]. Their use of defective scripts have been cited
as a major reason that speech and language processing results in Arabic and Hebrew lag behind
those of similarly-resourced languages [8, 9].

Diacritizers use machine learning to map defective scripts by inserting diacritics that are
not normally written, producing what is known as plene (‘full’) text. Examples of defective
and plene Arabic and Latin are shown in [Table 1| and [Table 2, respectively. Diacritizers must
incorporate local semantic information and deal with extensive ambiguity; in some extreme cases,
there may be more than a dozen different ways to diacriticize an Arabic word [[10], making this
task particularly challenging.

Diacritization, particularly of Arabic and Hebrew, has been studied for several decades, but
prior work—with a few exceptions—uses machine learning techniques such as decision trees or
linear classifiers [[1, 2, 11, 12], methods that are largely outclassed by the advent of modern neural
networks. In this proposal we will implement and compare two neural network approaches to
diacritization (section J). We select Modern Standard Arabic and Classical Latin for the proposed
study for several reasons. First, the two languages have rather different diacritic systems: Arabic
diacritics attach to consonantal characters, whereas Latin diacritics attach exclusively to vocalic
characters (section 3). Secondly, there is plentiful data available for diacritization experiments in
these two languages (section 4). Third, these languages suggest intriguing future applications for

the proposed technologies (section 5).

2 Models

We propose to implement and evaluate two neural models for diacritization.



(@) Ve g el Lol aolucie b dalySIl gsanls

(b)  Hod ez el 131331 Gaglica b 4al3SHT 3sdalig
() ‘All people are born free and equal in dignity and rights’

Table 1: Sample Modern Standard Arabic text (from the Universal Declaration of Human Rights);
(a): defective Arabic text; (b): plene Arabic text; (c): English gloss.

(a) ...TROIAE QVI PRIMVS AB ORIS ITALIAM FATO PROFVGVS LAVINIAQVE VENIT LITORA...
(b) ...trojae qui primus ab oris italiam fato profugus laviniaque venit litora...
(c) ..first driven by fate from the coast of Troy to Italy and the Lavinian coast...

Table 2: Sample Classical Latin text (Verg., Aen. 1.1-3); (a): text as it is appears in the oldest
extant manuscripts; (b): diacriticized text from Pharr’s Vergil reader [13]; (c): English gloss.

Neural lexicalized diacritization Diacritization can be treated as a token tagging problem
such that the tagger output can be used to map defective tokens to contextually-appropriate
plene tokens. Such methods are termed lexical when they make use of a morphological analyzer
with diacritic information, or a diacriticized lexical list, to generate candidate plene tokens. In
one common lexical approach, an analyzer or lexicon is used to generate a lattice of candidate di-
acritizations of the token sequence, then the best path is selected using a series of tagger and/or
ranker models [7, 14, 15]. We propose a simple alternative which represents a more straight-
forward approach to lexicalized diacritization. Straka, Strakova, and Haji¢ [16] use BERT [17]
neural taggers to predict part-of-speech (POS) tags, fine-grained morphological feature bundles,
and finally lemmas. At each step, later predictions are conditioned on earlier predictions. The
resulting model represents the state of the art in sentence-level morphological analysis [18]. To
adapt this model for diacritization, we will simply add a fourth prediction step, in which BERT
embeddings, the predicted POS tags, morphological features, and lemmas are together used to
predict the plene tokens subject to the constraints of a lemmatized lexicon.

Neural character tagger Alternatively, diacritization can be treated as a task in which each
eligible character in the defective text is tagged with its diacritics. Such methods are termed non-
lexical or character-based in that they do not depend on an analyzer or lexicon and therefore
may outperform lexical methods on out-of-vocabulary words. Following prior work on Hebrew
(3], we will use a multi-layer character-based bidirectional LSTM and a greedy decoder to tag
each eligible character with the appropriate diacritics.

3 Modeling Details

Arabic Modern Standard Arabic is written with an abjad, a consonantal alphabet which omits
short vowels. In plene Arabic, four diacritics known as harakat indicate which short vowel fol-
lows the diacriticized consonant. The three tanwin diacritics are used only at the end of words
to indicate the presence of a word-final short vowel followed by an [n]. The suk#n indicates
that a consonant is not followed by a vowel. The shaddah indicates that a consonant is geminate
(i.e., doubled). Some types of diacritic (e.g., shaddah and harakat) may co-occur on a single conso-



nant. Following Gershuni and Pinter [3], in neural character model, we will predict vowel-related
diacritics—harakat, tanwin, and the sukun—and the shaddah gemination diacritic using shared en-
coder layers but two separate softmax layers; this reduces a 14-class multinomial classification
problem to two simpler, partly-independent classification tasks. We will also mask forbidden
diacritizations, such as the prediction of tanwin in non-final position, during decoding.

Latin Classic Latin has phonemic contrasts between short and long monophthongs and be-
tween the high vowels [i, u] and glides [j, w] [19], though these distinctions are not indicated
in the standard defective orthography used until the 20th century. In Latin pedagogy, macrons,
horizontal bars written above the vowel, are used to distinguish long monophthongs from short
monophthongs. Some pedagogical texts also place a diaeresis over certain short monophthongs
in hiatus to indicate that they are to be read as a separate vowel rather than as part of a diphthong.
In addition to these two conventions, following Winge [7] we will also use j and v, respectively,
to distinguish glides from high vowels. This is not a matter of diacritization under the strictest
definition, though it provides essential information for the study of scansion. In total, there
are between two and four possible ways—plain, macron, diaeresis, glide—to diacritize a Latin
vowel character, depending on the vowel and its position; unlike Arabic, none of these diacritics
co-occur. Once again, we will use masking to prevent the model from entertaining forbidden
diacritizations, such as diaeresis when not preceded by another vowel, during decoding.

4 Data

For both languages we will make use of pre-existing resources for diacritization, allowing us to
compare our results to those of previously published work.

Arabic Following Belinkov and Glass [10] and Zalmout and Habash [[15], we will use the Penn
Arabic Treebank [20], which includes nearly 700,000 tokens of plene text from Arabic-language
newswire services. This resource is proprietary, but the Graduate Center already holds a license.

Latin Following Winge [7], we will use freely-available Classical Latin texts from the Latin De-
pendency Treebank and PROIEL [21, 22]. We will also make use of a novel corpus of 30,000 words
of diacriticized Latin poetry [13] digitized by the PI. These three resources together comprise over
140,000 tokens of plene text.

5 Significance and Outcomes

To our knowledge, the proposed work represents the first attempt to apply neural diacritization
methods to Latin, and the first to apply a purely character-level neural diacritization to Arabic,
and we hypothesize that the results will represent a new state of the art for diacritization in
the two targeted languages. Once experiments are complete, an article will be submitted to the
journal Transactions of the Association for Computational Linguistics, and all code will be released
under a permissive open-source license.



Results from this study will be used as pilot data to support an application for a NSF-BSF
Joint Funding Research Grant in collaboration with Prof. Yuval Pinter (Ben-Gurion University of
the Negev); the proposed grant will expand the evaluation to Modern Hebrew and several other
languages, and experiment with additional neural network techniques.

The Arabic diacritizer will be used to pilot diacritization of North African dialects of Arabic
text using data derived from Arabizi, a widely used but non-standardized romanization of Arabic
dialects [23]. Despite the lack of convention, short vowels are usually written in Arabizi, allowing
us to mine data to train North African Arabic diacritizers simply by mapping Arabizi (e.g., sa7el
‘coast’) to diacriticized ( >l ) and undiacritized ( J>Llu) Arabic text [24].

The Latin diacritizer will be integrated into a web-based Latin scansion tool. This scansion
tool allows students to visualize the rhythm of lines of Latin poetry. Users of this tool will no
longer need to painstakingly diacriticize poetic text as a result of this integration.

6 Methods and Evaluation

Systems will be evaluated using per-token and per-character error rate. We will also compute per-
token and per-character error rate specifically for out-of-vocabulary tokens (i.e., those not present
in the training set) so as to better understand the effect of lexicalization. Model hyperparameters
will be tuned random search to minimize error rate on a held-out validation set. Models will
be compared statistically using Bayesian hypothesis testing [25], and manual error analyses will
be conducted for both languages. All experiments and evaluations will be conducted using a
GPU-enabled computing cluster located in the PI's lab. It is anticipated that data collection and
software development will be completed by winter 2022, leaving the remaining six months of the
grant for experimentation and manuscript preparation.
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