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14 Descriptivestatistics

Daniel Ezra Johnson

:I - .
Introduction

When we have a small amount of data, we can avoid statistics com-

pletely.In suchcases,we caninspectanddiscusseachandeveryobservationor
datapoint.Forexample,if wemeasuredthefundamentalfrequencies(F0)of three

siblings’speech,wemightobservethatBetty’svoicewas25Hz lowerthanSue’s,

but 100 Hz higher than Frank’s. It would probably be uninterestingto report

a statistic like the averagepitch of the family. With a larger dataset,like F0
measurementstaken from 1,000 men and 1,000 women, the situation is reversed.

It isnolongerpossibleto discusseachdatapoint individually,andwhile it canstill

beusefulto makegraphsthatdisplay everyobservation,we will usuallybe less
interestedin individualpointsandmoreinterestedin thepatternsor trendsformed

by groupsof points.
This is wheredescriptivestatistics come in. Descriptivestatisticsgenerally

constitutethe secondstepin a quantitativeanalysis.The■rststepis to display

thedatain atabularor graphicalformat,usingahistogram,barchart,scatterplot,
cross-tabulation,or othermethod.This will revealanypeculiaritiesof the data
that will shapefurther analysis.For example,a severelyskeweddatasetmay
motivate a transformation,or the use of non-parametricstatistics.The second

stepis thedescriptivestatisticsthemselves,which distill thecomplexitiesof the
datadownto asmall,manageablesetof numbers,abstractingawayfrom details
(and noise) in order to describethe basic overall propertiesof the data.This

processcansuggesttheanswersto existingquestionsor inspirenewhypotheses

to be tested. .
Soif wetakeasinglevariablelike voicepitch,wecantalk aboutitsdistribution

(are all pitchesequally common or are there one or more “peaks” at certain
frequencies?),its centraltendency(what is themosttypical pitch for a woman’s
voice?), its dispersion(how much do men’svoicesvary in pitch?),as well as
higher—orderpropertieslike skewnessand kurtosis.If we take two variablesat

once,we canreporton their associationor correlation(e.g.,what is therelation-
shipbetweenvoicepitch andtheageof thespeaker?)

Descriptive statisticsdescribesamplesof data, but they do not attemptto

answerquestions(make inferences)about the larger populationsfrom which
thesamplesaredrawn.So if we measuredthepitch of twenty Englishspeakers
andtwenty Germanspeakers,descriptivestatisticsmight tell us thattheEnglish
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samplehadanaverageF0 thatwas 10Hz higher
thantheGermansample.If wewantedto know what to makeof this result —in particular,whetherthe differ-

ence could be due to mere chance (sampling error) —we could perform astatisticaltestcalleda t—test.But in doing so,we would be leavingthedomain
of descriptive statistics and entering the realm of inferential statistics
(Chapter15).

.
Different typesof variableso■encall for distinctstatisticalmethods;thesearediscussed in Section 2. Data distributions are covered in Section 3, and the

following threesectionsdiscusshow to describedistributions:beginningwith
measuresof centraltendencyor “averages”in Section4, continuingwith meas-
uresof dispersionor “spread” in Section5, and concludingin Section6 with
higher-orderdescriptivestatistics.In Section7, we discusshow to quantify the
extentto which variablesrelateto oneanother:associationandcorrelation.Since
thechapterwill havebeenconcernedprimarily with continuous,numericvaria-
bles up to this point, Section8 turns its attentionto descriptivestatisticsfor
categoricalvariables.Thechapterconcludeswith Section9.

Twesofvar-ables ‘
The mostbasicdescriptivestatisticof all refersto thetypeof variable

underconsrderatron.Until we identify thetypeof variable,wedonotknowwhich
otherstatisticsareappropriateto apply. Linguistic variables,collectedthrough

,
acousticanalysis,impressionisticjudgment, experimentalmeasurement,ques-tionnaire categories, counting within corpora, and more, run the gamut of variable
types. '

The most fundamentaldivision here is betweencontinuousand categorical
variables.Continuousvariables are numeric measurementsthat can theoreti-
cally takeon any value, or at leastany value within a certainrange.F0 is an
exampleof acontinuousvariable; in principle it cantakeon anypositivevalue
eventhough in practice no one has a meanF0 of 5 Hz or 500 Hz.

Formani

measurements, reaction times, and lexical frequencies are other examples of
continuousvariables.For truly continuousvariables,no two observationsare

Ever identical.However,we can sometimestreatmoregranularnumericvaria-
' .

les,like frequencycounts,ratingson ascale,or valuesthathavebeenrounded,
asif theywerecontinuous.Continuousvariablesarethe input to linear regres-

.
sron(seeChapter16).

It rssometimesimportantto distinguishbetweeninterval-scaleandratio-scale

,
continuous variables. Interval-scale variables do not have anatural zero point, so it
Ismeaningless to perform multiplication, division, and certain other mathematical
andstatisticaloperations.For example,on the Fahrenheitscale,it is not mean-lngful to takea ratio of temperatures,andsaythat 80 degreesis twice ashot as40 degrees.However,we can compareintervals,and say that an increaseof
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20 degreesis twice as largeas an'increaseof 10 degrees.On the Kelvin scale,

though,whereabsolutezero is de■nedmeaningfully,not only can we compare
intervals, but we can also take ratios. For example, we can indeed say that 400 K is

twice as hot as 200 K. Here and throughoutthis chapter,we will sometimes

employnon~linguisticexamplesin orderto makeconceptsor argumentsclearer.
Here, we have shown how interval-scale and ratio-scale variables can measure

temperature,with thedifferencelying in thechoiceof arelativelynon-meaningful

(Fahrenheit)vsmeaningful(Kelvin) zeropoint.A relatedissueariseswhenweuse

asubject’sdateof birth asanindependentvariable.Wecoulduse“1900,” “1925,”
“1950,” “1975,” or “0,“ “25,” “50,” “75” for the samefour speakers,and while the

meanswill be interconvertibleandthe standarddeviationswill not change,the

secondapproachgivesmoreusefulcoef■cientsin regression,sincewe will notbe

makinganypredictionsabout0 AD.
Unlike continuousvariables,categorical variableshavevaluesthat fall into

two or more distinct categories,rather than having a range of intermediate
possibilities. If therearemore than two categories,we can make a distinction
between ordinal and nominal variables. For ordinal variables, the categories

have a natural order; the categories of nominal variables have no natural order.

Classicexamplesof ordinal sociolinguistic variablesare the contraction and

deletionof theAfrican-AmericanEnglishcopula(heis tall, he3‘tall, hetall) and

the lenition of coda/s/ in Spanish,■rstto [h] andthen to zero ([03 libros, loh
libroh, lo libro). Examples of nominal variables are the alternation among that,

which, andzero in introducinga relativeclause(thecakethat I prefer, thecake
whichI prefer, thecakeI prefer), or whethera quotationis introducedwith say,

go, belike, or someothervariant.In thesecases,thereis no obviousorderingof

thepossibilities.
If thereareonly two categories,thenwe aredealingwith a binary (or dichot—

omous)variable. This type of variable is very common in linguistics, in both
phonologyandsyntax.Binary variablescaninvolve thepresencevs absenceof

someelement(e.g.,theword-■nalcoronalstopin lastchanceor thenegativenein
French).More generally,binaryvariablescancaptureanyalternationbetweentwo
possibilities,as in the (ing) variable (gone■shing vs gone■shin’), the dative
alternation(hegaveJohn the bookvs hegavethebookto John), or the particle
alternation(shetookout thetrashvsshetookthetrashout).Binary variablesare
the usual input to logistic regression (Chapter 16).

In this chapter,we will mainly discussdescriptivestatisticsas applied to
continuousvariables.Wewill coverdescriptivestatisticsfor categoricalvariables,
includingbinary variables,in Section8.

;3
Distributions

When we havea variable,especiallya continuousone, one of the
■rstthings we shoulddo is examineits distribution. The temptation is to skip
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Figure14.1.Stem-and-leafplot of daily temperaturesfor Albuquerquein 2010

aheadto summarystatistics like the meanand standarddeviation. Thesedo
describethe distribution in an overall way, but asalways,a picture is worth a
hand■rlof numbers.A distribution refers to the frequencyof the valuesof a
variable. It askshow often the variabletook on particularvaluesasopposedto
others.

This questionappliesto linguistic variablesof whateversort. Sometimes,the
distribution is expected(or hoped)to ■t a particular shapecalled normal (see
below),enablingtheuseof morepower■rlparametricstatisticsinsteadof having
to rely on lesspowerfulbut equallyusefulnon-parametricstatistics.

Supposeour variableis theaveragedaily temperaturein Albuquerquein 2010
(ADTA 2011).Naturally,thedataconsistof 365measurements.Wecandisplayit
in raw form as follows: 30, 35, 36, 33, 34,

. . .,
39, 40, 35, 37, 22 (this only shows

the■rst■veandthelast■vedaysof theyear).This formatisnotveryuse■rl.If we
‘ were interestedin 2010 for its own sake,we might want to make a plot of

.
temperatureagainsttime, showinghow thetemperaturechangedover thecourse

,
of theyear(veryroughlyspeaking,it wentupandthendown!).Thiswouldbeone
versionof abivariate(two-variable)distribution.But if we aremoreinterestedin

.
how 2010 measuresup againstother years,then we want to describethe uni-

‘ varzatedistributionof the2010data.For example,we might want.to know how
manydayswerebelow 30 degrees.(Four) And how manydayswereabove90
degrees.(None)

Thestem-and-leafplot, popularizedby Tukey(1977),is onewayof showinga
; univariatedistribution.For the2010Albuquerquetemperatures,if we divide the

_
datainto lO-degreeranges,we obtainthestem-and-leafplot in Figure 14.1.

Eachtemperatureissplit up into a“stem” anda“leaf" —for example,29 is split

.
into 2 (shownon the le■)and9 (shownon the right). The plot showsthat there

“ were4 daysin the205(22,25, 29, 29), andthatthereweremoredaysin the405
; and703 than in the 505 and 60s, and so on. Once you know how to read it, a stem-

!
and-leafplot is moreimmediatelyrevealingthanaconventionaltableof frequen-
cies, such as Table 14.1. The table shows absolute frequency (number of days in
eachtemperature range) and relative frequency, the latter expressed as a percent-

,
age(numberof days in eachrangedivided by the total numberof days,365,
multipliedlby 100). Annual temperature data have a ■xed denominator of 365 (or
366),but if we were going to comparedistributionswith different N (the total
number in a distribution is usually called N) then the relative frequency is much
more useful.

29]
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Table14.1 Frequencytableof daily temperaturesfor Albuquerquein
2010

Relative freq.

Temperaturerange Absolute freq. (days) (100 * days/365)

20—29 4 1%
30-39 54 15%
40—49 82 22%
50—59 45 12%
60—69 50 14%
70—79 96 26%
80—89 34 9%

The most commonway to display a univariatedistributionof a continuous
variable is neithera stemand-leafplot nor a frequencytable. It is the type of

graphthatPearson(1895)calleda histogram.A histogramis a kind of bar chart
(sometimes called a column chart, since the bars are vertical), with the value of the

variableshownonthex-axisandits frequencyshownonthey-axis.Wemustbreak
the continuousx-axis into categoriescalledbins,aswe havealreadybeendoing.
Thebinscanbeof anywidth,althoughthehistogramgiveslessusefulinformationif

they aretoo wide or too narrow.Figure 14.2is a histogramof the Albuquerque
' temperaturedata.Note that the histogramis essentiallyan upright stem-and-leaf

plot, minusthe detailedinformationaboutthe exacttemperatures.The heightof
eachbaris equalto thenumberof dayswheretheaveragetemperaturefell into that
bin. We seethat the distributionhaspeaksin the 405and 705,asnotedearlier.
Distributionswith twopeaksarecalledbimodal(afrequencypeakis calledamode;

seeSection 3). We also seethat there are no outliers, that is to say,no dayswhere the

temperaturewasnoticeablyhigheror lower thananyotherday.Thisdistributionis

not noticeablyskewedto the left or to theright. If therehadbeena few dayswith
temperatures in the 10s,a few in the Os,and l or 2 days below zero, that would be a
left-skeweddistribution:adistributionwith a longle■tail. Similarly,if therewerea
long right tail, thatwouldbecalleda right-skeweddistribution(seeSection6).

In reportinglinguistic research,distributionalplotsshouldbeusedmoreoften
than they are.They canbe usedin two main ways: at the outsetof analysis,to
revealtheshapeof thedata(andatthesametime,revealingwhatsimpli■cationsor
distortionsareinvolvedwith takingmeans,standarddeviations,etc.);orappliedat
the end, to the residuals (or error terms) of a linguistic model, to verify that the

variationnotaccountedfor by themodel isnot stronglycorrelatedwith anyof the
variables in the model, which would indicate a lack of ■t of the model.

In Section1,wediscussedvocalpitchof menandwomenin ahypotheticalway.
A realdatasetwith F0informationistheclassicPetersonandBarney(1952)studyof
AmericanEnglishvowels.PetersonandBarneyrecordedthirty-threemen,twenty-
eightwomen,and■fteenchildrenreadingasetof tenwords,twiceeach.Thewords
contained a range of vowels, all in the same consonantal environment: heed, hid,
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head,andsoon.TakingthemeanF0for eachadultspeakerleadsto thehistogramof
Figure14.3,whichshowsthemenin white andthewomenin grey.As we might
expect,thedistributionof F0 in Figure14.3is stronglybimodal,with apeakaround

-'- 125Hz representingthemosttypicalmenandonearound205Hz representingthe

.
mosttypicalwomen.It alsolookslike bothmenandwomen,especiallywomen,have

,
right-skeweddistributions(with longerright tails).

Wecanreducetheskewof thisdatabyperformingalogarithmictransformation
(usuallyusingthenaturallogarithm,but it doesnot matter).This makesa great
dealof sensefor F0data,becausepitch isperceivedlogarithmically:doublingthe

_,
frequencymakesthepitch go up oneoctave;quadruplingit makesit go up two

1
octaves.It is thereforenaturalto log-transformF0 (andarguablyhigherformant

: frequenciesaswell). Weseetheresultof this transformationin Figure14.4,where
the male and female distributions are still somewhat right-skewed, but less so.

Besidesits naturalapplicability to pitch data,the log transformationis often
f-employedto changethe distribution of other skeweddatasetsso that they are
fgaclosertoanormaldistribution.Normal(or Gaussian)distributionsareaparticular

family of bell—shapedcurves,asillustratedin Figure145.Theyarede■nedby two
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parameters,the meanand the standarddeviation (seeSections3 and4 below).
Figure 14.5showsthestandardnormaldistribution(standarddeviation'1)aswell

asanarrowernormaldistribution(standarddeviation0.5)andawider one(stand-
arddeviation2). They-axis is probabilitydensity;thetotal areaundereachcurve
is 1

.
A propertyof normaldistributionsisthat95percentof thevaluesfall between

—1.96and +1.96 standarddeviations from the mean,regardlessof what the
standarddeviation is. Continuousvariableso■enfollow normal distributions
quite naturally,becausea largenumberof factorscausethem to vary, and the

sumof a largenumberof randomvariablesalwaysfollows anormaldistribution
(this is calledtheCentralLimit Theorem).Othercontinuousvariables—reaction
time measurementsbeing one example—are usually log-transformedto make
themmorenormal.

Realdatawill neverbepreciselynormal,andbesidesinspectingthedatawith a
histogram, there are several other ways to estimate how close to normal a dataset

is, includingothergraphicalmethodslike thequantile-quantile(or Q-Q)plot, and
formal testslike the Shapiro-Wilk test,asdiscussedin Chapter15.Parametric
statistics,which require that databe distributednormally or accordingto some
otherprobabilitydensityfunction (seeChapter15),makeassumptionsaboutthe

Descriptivestatistics

distributionof thedata.However,datadonot haveto bepreciselynormalin order
to performmoststatisticalanalyses.Methodsarecalledrobustto theextentthey
cantoleratedeviationsfromassumptionslike normality.Non-parametricmethods
are a class of robust statistics that make no assumptions about data distribution, so
theycanbeusedwith highly skeweddata.Non-parametricmethodsarealsooften
themostappropriatechoicefor analyzingordinalandnominaldata.

5‘'Central“tendency

If weneededtodescribeavariableandcouldonly useasinglenumber,
wewould surelyreporta measureof central tendency.The centraltendencyis a
“best estimate” of the value of the variable; different de■nitions of “best" result in
different measures, such as the mean, median, and mode. It is almost always
essentialto calculatecentral tendency,as it is the principal numberthat gets
reportedfor a distribution,or comparedbetweengroups.

By far the mostcommonlyusedmeasureof centraltendencywith continuous
variablesis thearithmeticmean,or simply themean.Thearithmeticmeanis the
sum of all the values of the variable, divided by N, the number of observations.
Themeanis informally calledthe average,but this termcanbe ambiguousand

_
shouldbe avoided.When it is appropriate,the calculationof a mean(and the
comparisonof means)is thepowerhouseof descriptiveandparametricstatistics.

:5 Thereisalsoageometricmean—theNth rootof theproductof all thevalues—best
1, usedwhen(a) thequantitiesbeingcomparedareondifferentscales,or (b)whena
‘ logarithmic/exponentialrelationshipexists.For example,thegeometricmeanof

l, 10,and100is 10,whichdependingonthedetailsof thesituationmaybeamore
'_ sensiblemid-point than the arithmeticmeanof 37. A third type of mean,the

harmonicmean—the reciprocalof the arithmeticmeanof the reciprocalsof the
values—is o■enusedwhenthequantitiesareratiosor rates.Soif onetravelsfrom

2f pointA to point B at 50 miles per hour, andreturnsat 100miles per hour, the
averagespeed (total distance / total time) is the harmonic mean of 50 and 100, or
66.6 miles per hour (not the arithmetic mean, 75, or the geometric mean, 70.7).
Whiletherearefew clearapplicationsof theharmonicmeanin linguisticresearch,
notethatin the■eldof patternrecognition,theF1scoreis de■nedastheharmonic
meanof precisionandrecall.

Themedianisde■nedquitedifferently.If thevaluesof thevariableareplacedin
3 orderfrom smallestto largest,themedianis thevaluein themiddle.(If N is even,

wetakethemeanof the two middle values.)Outliers—unusuallysmallor large
values —will affect the mean, but will have little or no effect on the median, so
themedianis preferredwhen largenumbersof (valid) outliersexist.Also, if the

' distributionis very skewed(seeSection6), themeancanbe misleading.1nthe
-. million-wordBrown Corpusof English,thereare45,215wordtypes,whichoccur
j_ between1and69,836timeseach.Themeanword frequencyis 22, whichwould

point to words like refund,sphere,andFlorida as typical in frequency.But in
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reality only 10percentof word typesarethis frequentor moreso.On the other

hand, the medianword frequencyis 2, exempli■edby rarer words like kelp,

starchy,and Tchaikovsky.Some58 percentof word types are this frequentor

more so, showingthat the median,not the mean,successfully.representssome-
thing like themid-pointof wordfrequency.In thecaseof anordinalvariable,such

asthe ■ve-pointsurvey’spopular“strongly agree,agree,neitheragreenor dis-

agree,disagree,stronglydisagree,”thereis no possibility of calculatinga mean

response,becausewe only haveinformationon ordering,not distance,between

the categories.Ordinal variablesthereforecall for mediansand median-based

statistics,includingnon-parametricmethods.
.Thethird measureof centraltendencyis themode,themostcommonvaluein a

distribution.In the Brown Corpusexample,the modal frequencyfor word type
would be 1,sincemoreword typeshaveafrequencyof 1(19,130)thananyother

value.A variablealwayshasa singlemeanand a singlemedian,but it canhave

morethanonemode,if morethanonevalue is equallyfrequent.A variableWith

two modes is bimodal, but aswe saw above, the term bimodal can be applied more

broadlywheneverthe frequencydistributionhastwo peaks,evenif theyarenot
equally frequent.For a nominalvariable,with unorderedcategories(e.g.,noun,
verb, adjective, preposition), we cannot establish amean or a median; the mode is

theonly centraltendencythatis de■ned.
. .Householdincome is more tangible than most linguistic variables,and is a

classic way to explore the differences between the mean, median, and mode. We

will look at household incomes under $200,000 in the United States in 2009 (US

CensusBureau2011a).The histogramin Figure 14.6 revealsa right—skewed

distribution of income (with a longer right tail), and the mean,median,and

mode are labeled. The mean, $57,990, is equal to the total income of 'all the

households,dividedby thenumberof households.This answersthe question,“If

all theincomewereredistributedequallyamongthehouseholds,how muchwould

eachhouseholdmake?”This is an interestingquestion,but we areusuallymore
interestedin reportingtheactualincomeof a typical household.Wecando this
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Figure14.6.Histogramof2009 householdincome,with centraltendencies

labeled

with the median or the mode. The median, $47,500, would be the midpoint of all
thehouseholds,if theyweresortedby income.In otherwords,half thehouseholds
made lessthan $47,500 and half made more than $47,500 (besides thosethat made
$47,500). This answers the question, “What is the income of the middle house-
hold?” The mean is the most commonly used measureof central tendency, but it is
oftenthemedianthattellsuswhatwearemoreinterestedin knowing.Therelative

'_ positionof themeanandmedianis relatedto skewness(seeSection5). In aright-
Skeweddistribution, like this one, the mean is usually greater than the median. In a
left-skeweddistributionthemeanis usuallylessthanthemedian.Themodeis the
income bin with the most households in it; this is $22,500. The mode answers the
question, “If we choose a household at random, what is its income most likely to
be?"More householdsmade$22,500thananyotheramount.Despitetheappeal
of themode,it israrelyreportedasameasureof centraltendency(andthemodeis

‘A not necessarilya central value,just the most common value). For household
income,it is mostcommonto reportthemedian.

1nlinguistics,a commonright-taileddistributionis theZipfir Law relationship,
where,in a corpusfor example,token■equencyis inverselyproportionalto type

_
rank:themostcommonword occurstwice asoften asthe second-most-common

" word,andso on. Thesedistributionsfollow apower law ■mctionof thegeneral
1. form y = l/x, where the mean, median, and mode are far apart, a distribution much

moreskewedthananysetof acousticor articulatorymeasurementsarelikely tobe.
: As ageneralrule,weexpectrepeatedmeasurementsto approximateanunskewed

normaldistribution,wherethemean,median,andmodearequiteclosetogether.
Returningto theAlbuquerquetemperaturedata,themeantemperatureis 58.2

degrees(wecanimaginedividing all thedegreesequallyamongall thedays).The
mediantemperatureis 58.9 degrees(182 dayswere colder, 182werewarmer).
Andtherearetwo modes:5dayswere44.8degreesand5dayswere74.6degrees.

ForthePetersonandBarneypitchdata,themeanof thespeakerF0values(each
of which is itself a mean of 20 individual observations) is 173 Hz overall, 131 Hz
for men and 223 Hz for women. The median values are 163 Hz overall, 126Hz for
.menand223Hz for women.Thegenerallyhighervaluesfor themeansre■ectthe
right-skeweddistributionof the untransformedF0 data.The maledatahadtwo
modes,asthree men had FOsof 122 Hz and three more were at 126Hz. The female
.datahad four modes, with two women each at 201

,
207, 231, and 252 Hz. Recall

that for continuousvariables,no two valuesare underlyingly identical,so the
resultfor themodewill alwaysdependsomewhaton how thevaluesarebinned
(the F0 measurements were rounded to the nearest Hz, the temperatures to the
closest 1/10 of adegree; the household incomes were placed in $5,000-wide bins).

Themedian(like themode)is relatively immuneto thepresenceof outliersand
otherextremevalues,while themeanis moreaffectedby them.A few unusually
highvalueswill pull themeanup noticeably,anda few extremelylow valueswill

' ' pull it down.Sincesuchoutliersmayrepresentmeasurementerrorsor other“bad

.~
data,”wemaypreferto usethemedian,or amorerobustversionof themeansuch
asthe truncated or Winsorized mean (see Erceg-Hurn and Mirosevich 2008).

297



'*
-I

.‘.
";

":
""

T
":

""
"'T

""
"“

..
..

av
e-

nu
-7

:
_v

_...-
.,.

.
V

9.
...

..
fr

)“

298 DANIEL EZRA JOHNSON

Above, we havegraphicallydisplayedthe distributionof variablesby using

histograms.Whencomparingtwo or moredistributions,thebox plot (or box-and—

whiskersplot; Tukey 1977)is especiallyuseful.SeeChapterl5 for moredetails.

.5
. .

”Dispersion,”

A measure of central tendency describes the average,middle, or most

typicalvalueof avariable.A measureof dispersiontellsushow muchthevalues

vary on eithersideof thecentraltendency.For example,avariablewhereall the

valuesareclusterednearthemeanwould exhibit low dispersion,while awidely

rangingvariablewould showhighdispersion.Dispersionisanessentialpartof the

descriptionof any variable‘s distribution. Furthermore,a given difference in

centraltendencymeansmore in the contextof low dispersionthanhigh disper-

sion. For example,words that are twice as long as the meanmight be fairly

commonin English and evenmore so in German—but peoplewith twice the

averagenumberof toesareanextremerarity.
A commonapplicationof dispersionin sociophoneticsis to help determineif

two vowel clouds representmergedor distinct categories.One can carry out

separatet-testsfor each formant, or calculatethe position of eachdata point

along a single (diagonal) axis and perform one t-test, or use more complex

methods(e.g.,Hotellings T-squared,Pillails trace). In all cases,the greaterthe
dispersion,the greatera differencein meanposition is requiredto supportthe
hypothesisof distinct categories.Another use of dispersionis in'normalizing

vowel fonnantsacrossspeakers(e.g., the Lobanovmethod).Speakersdiffer in

their meanformant frequencies,but also in their dispersion,so both must be

equalized.
For a continuousvariable, the easiestdispersionstatisticto calculateis the

range, which is simply the maximum value minus the minimum value. This

measurementis obviously very sensitiveto outlying values.When thereareno
real outliers, it can be useful.Our daily temperaturesin Albuquerquestretched

from22to 87,sotherangeis65degrees.Weusuallyreporttherangealongsidethe
median, which is 59 degrees (rounded to the nearest degree).

Theconceptof quantiIeshelpsusto de■neamorerobustandmorefrequently
used measureof dispersioncalled the interquartile range. Quantiles are the
dividing points obtainedwhen you divide the datavalues into equally sized
subsets or bins. Here, the number of observations is equal across bins, not the

width of thebins.For example,percentilesresultfrom dividing thedatainto 100
equal bins. The 50th percentile is the sameasthe median. The 25th, 50th, and 75th

percentilesareotherwiseknownasthe 1st,2nd,and3rdquartiles(thebreakpoints

from dividing the datainto four equalbins).The differencebetweenthe 1stand

3rd quartilesis the interquartilerange(IQR), a goodmeasureof dispersion.The

valueswithin the IQR comprisethemiddle half of thedata.The IQR alsoforms

the“box" partof a box—and-whiskersplot (seeChapter15).The “whiskers” of a

Descriptive statistics

standardbox plot stretchat most+/—1.5IQR oirt from theendsof thebox; any
data point further away is consideredto be an outlier. For the Albuquerque
temperatures(median 59 degrees),the IQR is 31 degrees.For Petersonand
Bamey’s male speakers’ F0 (median 126 Hz), the IQR is 22 Hz. For the female
speakers’ F0 (median 223 Hz), the IQR is 25 Hz.

By far themostcommonlyusedmeasureof dispersionis thestandarddevia-
tion,aquantityderivedfrom thevariance.Thevarianceis thesumof thesquared
distances between each data point and the mean, divided by the number of
observations, N. So for the dataset (l, 3, 4, 5, 6, 7, 9), the mean is 5, the distances
from the mean are (—4,—2,~1, 0, 1,2, 4), and the squareddistances are (16, 4, l, 0,
1,4, l6).Nis7,makingthevariance(l6+4+ l +0+ l +4+ l6)/7=42/7=6.
(By showingformulasandcalculations,this chaptersometimesgoesover math

‘1' thatin practiceis doneby acomputerrunningastatisticspackage.However,it is

~.
usefulto understandwhat is goingon insidestatisticaloperationsandtests,which

’ canotherwnsebecome“black boxes”) Thestandarddeviationis thesquareroot of
the variance,or in this case,\/6 = 2.45. Taking the squareroot ensuresthat
theunits of the standarddeviationarethesameastheunitsof the original data.
This makes the standard deviation easier to interpret than the variance, which will
oftenbe expressedin unnaturalunits suchassquaredegrees,squaredollars,or
squareHz.

Whenthedataareasampledrawnfrom a largerpopulation—like thePeterson

.--.
andBarneyF0 data,but not theAlbuquerquetemperaturedataor theUS house-

,
hold incomedata—we must replaceN with N —1 in thevarianceandstandard

'
7, deviationformulas.The samplevarianceabovewould be 42 / 6 = 7, and the

- i
samplestandarddeviationwouldbe \■ = 2.65.(ThereasonweuseN ——1instead
of N in the divisor, called Bessels correction, is becausewe would otherwise be
underestimatingthevarianceandstandarddeviationby usingthedistancesof each
point■omthesamplemeaninsteadof thepopulationmean.)

”No distributionscanhavesimilarmeansbutverydifferentstandarddeviations
.i-(andvice versa).We recall that the meanof the 2010Albuquerquetemperature

.. .-
distributionwas58.2degrees.Thestandarddeviationof these365temperaturesis

-"' 16.5degrees.In SanFranciscoduring thesameyear,themeandaily temperature
" was57.5,almostthe sameasin Albuquerque.But in SanFrancisco,the standard

deviationwasonly 6.0degrees,re■ectingthemuchsmallerseasonaltemperature
vanationin thatcity.

.
The standarddeviation for the F0 of the PetersonandBarneymalespeakers

1817.0Hz, and for the femalespeakersit is 20.5Hz. Wecanseethat for these
data, whether we use IQR (22 vs 25) or standard deviation (17 vs 20.5) as a
measureof dispersion,we ■ndthe value for the womenis slightly higher than
for the men. Figure 14.7 illustratesthe dispersionof the Petersonand Barney
F0 measurements,separatedbetweenmen and women. For each group, the
■gureshows a box plot, which identi■esthe median and the IQR, and a
histogramlabeledwith themeanand+/—l and+/—2 standarddeviationsfrom
themean.
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Figure14.7.Dispersionof PetersonandBarneyF0for menandwomen

In analyzinga continuousvariable,we usually choosebetweenreportingthe

mean and standard deviation, on the one hand, or the median and interquartile

range,ontheother.If therearesigni■cantoutliers,or if thedataarequiteskewed,
themedianispreferred.Median-basedstatisticsarealsopreferredif thevariableis
ordinal.If thevariableis nominal,only themodeis well de■ned.

Although this chapterdoes not cover tests for statistical signi■cance(see
Chapters15 and 16), suchtestsmakeuse of the kinds of descriptivestatistics
discussedthus far. Non-parametrictests, for example,refer to medians(e.g.,
Mood 19median test) or ranks (e.g., the Mann-Whitney test), while parametric

statisticaltests(e.g., the t-test)employmeansandstandarddeviations.In infer-
entialstatistics,muchuseis madeof the fact that95 percentof thevaluesof any
normallydistributeddatasetwill fall between—;1.96and+1.96standarddeviations
from themean.

Themeasuresof dispersiondiscussedaboveareall expressedin thesameunits

asthevariableitself.Therearealsodimensionlessmeasuresof dispersion,which

areuse■rlfor comparingdissimilardatasets.A parametricexampleis the coef-
■cient of variation, the absolutevalueof the standarddeviationdivided by the

mean.A non-parametricexampleis thequartile coe■icientof dispersion,theIQR
(differencebetween■rstandthird quartiles)divided by the sumof the ■rstand
third quartiles. Using these measures,we could demonstratethat the US
householdincomesaremoredispersedthantheAlbuquerquetemperatures.

tightens;aega‘r'iptaesenate;
_-

In thissection,wewill discussskewnessandkurtosis.Theseproperties
_

of a distributionarenot asbasicascentraltendencyanddispersion,but they are
importantnonetheless.'I‘wodistributionscould matchexactlyin centraltendency
anddispersion,but bequitedifferentaccordingto thesehigher-ordermeasures.

Descriptivestatistics

Wehavealreadyreferredto theskewnessof‘a distribution in informal terms.
Left-skeweddistributionshavea longerleft tail, while right-skeweddistributions

3:: havealongerright tail. Calculatingskewnessis aformalway of describingwhere
a distribution lies alongthis dimension.Recall that the varianceis the average
squareddifferencefrom themeanof a variable’svalues.To calculateskewness,
wetaketheaveragecubeddifferencefromthemean,anddividethisby thecubeof

Z' the standard deviation. If the distribution has many values well above the mean,
whenthesearecubedit will createlargepositivetermsin theskewnessformula.If

7 thedistributionhasmanyvalueswell belowthemean,therewill belargenegative
terms in the skewnessformula. All in all, positive skewnessmeansa distribution is
right—skewed,andnegativeskewnessmeansit is le■-skewed.

Unlike themeanandstandarddeviation,skewnessis adimensionlessquantity,

3,
withoutunits.Any symmetricdistributionhasaskewnessof zero,becausetheleft

5 andright tailsaremirror imagesof oneanother.Symmetricdistributionsinclude—
57;".thoughof coursearenot limited to —normaldistributions.For this reason,skew-

' nessis one measureof non-normality,while the absenceof skewnessis no
{- guaranteeof normality.

Above, we observed that the distribution of American incomes is noticeably
skewedto theright, with a longtail of highervalues.Thecalculatedskewnessfor

3];2009 United Stateshouseholdincomes is 0.99. We can make an interesting
" contrastbetweentheUnitedStatesandCanadain thisrespect,if wecompare

L' 2009 personal incomes between $5,000 and $100,000 (Statistics Canada 2011;

USCensusBureau201lb).Themeans(US:$33,008;Can.:$35,045)andstandard
deviations (US: $22,027; Can.: $22,519) are quite similar between the two

‘5countries.However, the'skewness■guresare more noticeably different (US:
0.92; Can.: 0.84). This re■ectsa greater inequality of wealth in the United

,~
States,a differencewhich would show up evenmore strongly if we included
higherincomes.

In Section2, we observedinformally that the Petersonand Barney pitch
distributionswere skewedto the right for both men and women.We can now
quantify this skew: the men’s data have skewness of 0.46, the women’s have
skewnessof 0.16. As noted,one way to reducethis skewnessis the log trans-
formation, which reducesit to 0.22 for men and —0.02for women. (The baseof the
logarithm used does not affect the change in skewness.)

Any distributionfollowing Zipf’s Law is inherentlyskewedto theright. Zipf’s
7Law saysthat the frequencyof aword is inverselyproportionalto the frequency

,
tank of the word. So, for example, the second most common word should be half

asfrequentasthemostcommonword,andthethirdmostconunonwordshouldbe

. one-thirdasfrequentasthemostcommonword. Wecanseeapatternlike this in
:3"theBrownCorpusof AmericanEnglish(FrancisandKucera1964),wherethe

10th most common word occurs 9,801 times, the 100th most common word

Occurs904times,andthe 1,000thmostcommonword occurs104times.For the
' I .

distributionasa whole, the skewnessis a whopping95.6.Log-transformingthe
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frequenciesreducestheskewnessto 1.45,althoughthetransformeddistributionis
still onebig right tail, certainlyfar from normal.

Kurtosismeasuresthe extentto which a distributionhasa pointy peak (lep-
tokurtic) or a roundedpeak(platykurtic). We cangraphicallyassesskurtosisby
comparingourvariableto anormaldistributionwith thesamestandarddeviation.
(In fact, all normal distributions have the samekurtosis.) The formula for kurtosis

is thesameasfor skewness,exceptwe substitutethefourthpowerfor thecubein
boththenumeratoranddenominator.Tocalculatetheexcesskurtosis(usuallyjust
calledkurtosis),wesubtract3 to accountfor thekurtosisof anormaldistribution.
After this correction,leptokurticdistributionshavepositivekurtosis,platykurtic

oneshavenegativekurtosis.
Normally distributeddatahaszero(excess)kurtosis,althoughtheconverseis

not true:zerokurtosisdoesnot guaranteenormality.Like skewness,kurtosisis a
dimensionlessquantity,making it easyto compareacrossdifferentvariables.

Ourtemperaturedistributionisplatykurtic,with arounded“peak” (actuallytwo
peaks). Its (excess) kurtosis is —l.37. Our pitch data, with men and women
combined,hasa similarly wide doublepeak; its kurtosisis —1.25.On the other
hand,our householdincomedistributionhasa pointierpeak;it is slightly lepto-
kurtic, with a kurtosisof 0.41.Our word frequenciesareextremelyleptokurtic,
havinga very sharppeakat 69,836(representingtheword “the”), while mostof
the values are less than 10. The kurtosis for this dataset is 11,877!

Skewnessand kurtosis are underused in the linguistics literature, but it is better

to calculateand report them than to comparethe shapesof distributions infor-
mally.Theanalysisof vowel formantcloudsusuallyrelieson means,with stand-
ard deviationsemployedfor difference-of—meanstestingandnormalization,but
the acousticanalysisof some consonantalfeatureslike fricatives has found
spectra]skewnessandkurtosisto correlatewith key perceptualdistinctions.

The previoussectionsmostly dealtwith onevariableat a time. They
describedvariouspropertiesof distributions,like centraltendencyanddispersion.
Theyalsocomparedvariablestakenfrom differentdatasets(e.g.,showingthat a
particularincomedistribution is moreskewedthana particularF0 distribution).
This sectionwill comparevariablestakenfrom the samedataset.So if we were
talking aboutthephysical traitsof a certainsetof people,we might discussthe
relationshipsamongtheir heights,weights,andeyecolors.

In linguistics, a great deal of researchinvolves identifying the associations
betweenvariables.Forexample,in sociolinguisticswemightwantto know which,
of asetof socialandlinguisticvariablesmight affectthephoneticsof asound,the

rateof occurrenceof a phonologicalrule, or a choicebetweenmorphologicalor
syntacticstructures.In experimentalresearchthepurposeis veryoftensimilar: to
establish the existence and strength of the relationship between an independent

Descriptivestatistics

andadependentvariable.Forexample,in a lexiEaldecisionexperiment,wemight
measuretheeffectonreactiontimebetweenvarioustypesof potentialprimes.The
accurateassessmentof anassociationcanbe complex,especiallywhenthereare
many other variablesto be controlled for, and/orrepeatedmeasurementsfrom
subjectsand from items.One■exibleapproachis mixed-e■ectsregression(see
Chapter16).This sectionwill coveronly muchsimplerstatistics.

If knowing the value of variable X doesnot help you predict the value of
variableY, thenthetwo variablesareindependent.If thevaluesarerelatedin any
way,thenthevariablesaredependentor associated.Associationscantakemany
forms,but to the extentthat anassociationis linear—“if X goesup by a certain
amount,thenY goesup or downby acertainamount”—wecanmeasureit with a
statisticcalledthePearsoncorrelation.

If we comparedtheheightsandweightsof a largegroupof people,we would
■ndastrongpositivecorrelation.Knowing someone’sheighthelpsyou to predict

.
their weight (not precisely,of course,but to a largeextent).Taller height goes
alongwith heavierweight, which makesthe correlationpositive. On the other
hand,eyecolor is independentof bothheightandweight.Knowingsomeone’seye

.
colordoesnot helpyou predicttheir heightor weight.

' The relationship of associationor independencebetweentwo variables is

,
alwaysa two-way street.If heightcanhelp uspredictweight (association),then

.4; weight can help us predict height. And if eye color doesnot predict height

,
(independence),then height doesnot predict eye color. Famously,correlation

_-
(two-way)doesnot imply causation(usuallyone-way,if it existsat all).

.
Figure 14.8 is a plot showing a non-linear association,betweenthe 2010

2 Albuquerquetemperaturedata(on the y-axis), and the day of the year (on the
x-ax15).Of course,we know that temperatureis highly dependenton the time of

. year,but we havean up-and—downtrend,not a straight-linetrend.If we plot the
~dataover5years,asin Figure14.9,weseeacyclicaltrend.Wemight try to model
j. this relationshipwith a sine wave or similar function, but certainly not with a
" straightline.
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Figure 14.8. Plot of 2010 Albuquerque temperatures by date
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As with anystatistic,it is importantto graphdatabeforeattemptingto calculate

a Pearsoncorrelation.If the relationshipbetweentwo variablesis not basically

linear, then the Pearsoncorrelation coef■cientcan be very misleading. For

example, the correlation between date and temperature for the 2006—10

Albuquerquedata is only 0.04, even though we know —and can see—that

temperatureis highly dependenton time.The associationis simply not linear.

To illustrateamoreappropriateuseof thePearsoncorrelation,supposewewant

to know if thereis a relationshipbeMeenthe fundamentalfrequencyof a speak-

er's voice (otherwiseknown asF0 or pitch) andthe higherformant frequencies

observedin vowalproduction.As aquicktestusingthePetersonandBarneydata,

wecanplot F2againstF0for thewordheed,averagingthetwo observationsof the

word made for eachspeaker,and shadingthe points accordingto sex, as in
Figure 14.10.The ■gureshowsalmostno overlapbetweenthemen’sandwom-
en’spoints.WomenclearlyhavehigherF0 andhigherF2 thanmen;thereforethe
variablesareassociated.Thepointslie roughly on a line, sowe cango aheadand

calculateaPearsoncorrelation.(Theupward-slopingrelationshipseemstobeless

strongif we look at themen’sor women’sdataseparately;seebelow.)

Descriptive statistics

§j Correlationsalwaysrangebetween-1 and+‘l. For thePearsoncorrelation,—l377' meansthatall thepointsfall exactlyon a downward-slopingline, and+1 means
that they all fall exactlyon anupward-slopingline. We expectto seea positive
correlationbetweenF0 andF2 here,sincethe pointsfall closeto —but not right
on - anupward-slopingline.

The Pearsoncorrelation is de■nedas the covarianceof the two variables
divided by the productof their standarddeviations.To understandcovariance,

_.
4;: let us consider the ■rst■vemale speakers.Their F0 values are (173, 148, 108, 153,

f 134), with a mean of 143. Their F2 values are (2340, 2290, 2240, 2345, 2280),
with a meanof 2299.For eachspeaker,we takethe differencebetweentheir F0
andthe F0 meanandmultiply it by the differencebetweentheir F2 andthe F2
mean. This gives us (30 * 41, 5 * -9, —35* —59,10 * 46, -—9* —l9) * = (1230, —45,
2065,460, 171).The covarianceis the meanof theseproducts.For these■ve

_
speakersit is 776,but for thewholedatasetit is 12,287(theunit is squaredHz).
The standard deviation for F0 is 52.5 Hz, and for F2 it is 277.4 Hz, making the
Pearsoncorrelationcoef■cient(12,287/ (52.5 * 2774)) = 0.844.Thesymbolfor
thePearsoncorrelation,a dimensionlessquantitywith no units, is r.

If wesquarer = 0.844,wegetr-squared= 0.712.Thevalueof r-squared,which
alwaysfalls between0 and 1,hasavery useful interpretation.It is theproportion

,' of thevariancein F2 that is accountedfor by F0. That is, knowing F0 decreases
ourerrorin predictingF2by 71percent.R-squaredismosto■enusedthisway,to

_
summarizethe■tof amodel:howmuchof thevariancein thedependentvariable
isaccountedfor by theindependentvariable(s).Ontheotherhand,r ismoreo■en

; usedto measurethecorrelationbetweentwo variableswhenwearenot thinkingof
_’oneasthepredictorandtheotherasthepredictedvariable.

A relatednumberis theslopeof theregressionline, thebest-■ttingstraightline
i drawnthroughthepoints(seeChapter16).Theregressionslopeis thecorrelation

.g
multiplied by the standarddeviationof the y-axis variable,and divided by the
standarddeviationof thex-axisvariable.Herewe have0.844* (277.4/ 52.5)=

'14.46.This meansthatF2 increases4.46Hz for eachl-Hz increasein F0.Looked
1 attheotherway round,thePearsoncorrelationr is a standardizedversionof the
: regressionslope.It saysthatF2 increasesby 0.844standarddeviationsfor every

l-standard-deviationincreasein F0.
Althoughthereis ahighcorrelation(0.844)betweenF0 andF2 for themenand

women combined, the correlations for men alone (0.160) and for women alone
(0.245)aremuch lower. Although it is a generalprinciple that correlationsare
smaller when variables are observed over a restricted range, the decreasehere is

" extreme.WeconcludethatF2 isassociatedwith sexmorethanit iswith F0.This is
Whywe seegreaterF2 variability betweenthe sexgroupsandfairly little within

‘ them.(A regressionanalysis,of thesortcoveredin Chapter16,would tell usthat
' 3 F0 is no longer a signi■cant predictor of F2 once sex is included in the model.)

.
As a parametricstatistic,thePearsoncorrelationworks bestwhenbothvaria-

' blesareroughly normally distributed.The Pearsonmethodis also sensitiveto

,
outliers. If our data deviate greatly from normality, and especially if there is a
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nonlinearrelationshipbetweenthe variables,it is betterto!usea non-parametric

measureof correlationsuchasSpearmanIsrho or Kendalls tau.
‘ - . dbSpearman’srho iscalculatedusingthesamemethodasr (covariancediVide■ y

product of standard deviations), but the data are transformed into ranks 6rslt.

Ranks just look at the ordering of the numbers, not their values, so (10, 3,
id,

100) and (8, 0, 7, —100,1,000) would both become (4, 2, 3, 1, 5). Non-parame cl

methodsoften involve using ranks,which convertcontinuousdatato an ordina

scale.This makesthe methodslesspowerful —moredataareoften requiredto
observean effect—but more robustagainstoutliers'andskewedor multimodal

distributions. While Pearson‘sr quanti■esthe linearity of a relationsl■ip,

Speannan’srho assessesits monotonicity.In a perfectlymonotonicrelations 1p,
as one variable increases, the other consistently increases or decreases(but _n<1>t

both). If both variables consistently move (iinthesamel1directiclm,we have rho — ,
'f the consistentl move in opposite irections, o = —.

.
amljiclirexzmple,suppoZe

that x = (1,2, 3, 4, 5).2Ify = x, Pearson’sr is 1,because

thepointsfall exactlyon a straightline. If y = x = (1,4, 9, 16,22),_Pearso;t7s2:15
0.98; the points are close to a straight line, but not quite. If y = x —(1, 8,

,d t;
125), r = 0.94. Ify = 10" = (l

,
10, 100, 1,000, 10,000), r = 0.76..Whenever the a

follow acurveratherthana straightline, thePearsoncorrelationwrll departfrom
1. However, in all four cases,Speannan’s rho is still 1, becausethe relationship 15

perfectlymonotonic;in eachcase,asx goesup, y alwaysgoesup. This relation-

‘ ' tedinFi ure 14.11.8111;251:5111::35 anothegr
non-parametriccorrelationcoe■icient,which has a;

fairly simplegeometricinterpretation(Noethcr1980).if wemake'ascatterplct>1t10

our variables,pick any two points at random,and10111them With a line, en
Kendall’stau is theprobability that this line will haveaposrtive(upward)slope,

minustheprobability that it will havea negative(downward)slope.We cat:see
that this quantity will fall in the familiar rangebetween—1and+1, and. at a;
perfectmonotonicrelationshipbetweenx andy W111againresultin acoe■icrento
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Figure 14.11. The relationship between Pearson s r and Spearmans rho
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+/- l. Kendall’s tau tends to be smaller thari Spearman’s rho, but the two aresimilar.
SincebothSpearman’srho andKendall’staudisregardthenumericaldistance

betweenthevaluesin determiningacorrelationcoef■cient,bothmethodsarealso
appropriatefor use with ordinal data,where the conceptof distancebetween
valuesdoesnotexist.Wewill discussdescriptivestatisticsfor ordinalandnominal
datain thenextsection.

_
DescriptivestatiStics■iorcategoricaldata

_In the sectionsabove,we have discusseddescriptivestatisticsfor
continuousvariables,de■nedbroadly asnumericmeasurementsmadeto somereasonablelevel of precision. We may have roundedour temperaturesto the
nearestdegreeandrecordedour pitch measurementsastheclosestHz, but it did
notstopus from treatingthemascontinuousvariables.

This sectionwill discussdescriptivestatisticsappropriatefor the threemain
typesof categoricalvariable: ordinal, nominal, and binary. The categoriesof
ordinal variableshave a natural order (e.g., a Likert scale: strongly disagree,
disagree,neither agreenor disagree,agree,strongly agree).The categoriesof
nominalvariableshaveno naturalorder (e.g., type of tree:elm, ginkgo, maple,
oak,pine).Binary variables,with only two categories,canbehavein somewayslikecontinuousvariables.Forexample,wecantakethemeanof abinaryvariable,
butthis is notpOSsiblefor ordinal or nominalvariables.

Linguistic investigationsoften employ categoriesas independentvariables,
while thedependentvariablesarecontinuous;our analysisof voicepitch by sex-"wasan exampleof this. It is alsocommonfor dependentvariablesto be catego-rical.Responsesto experimentalscales,suchasacceptabilityjudgments,identity
reports,andratingsof speechsamples(guises)alongpersonalitydimensionsareordinal variables, though they can sometimesbe treated as continuous.

..
Articulatory judgments can be ordinal —front, central, back; raised, canonical,
lowered-—or nominal,asin rating/r/ asatrill, tap,approxirnant,or uvularsound.Binarylinguistic dependentvariablesincludemanymorphologicalandsyntactic
alternations,andsomephonologicalones.The VARBRUL/GoldVarbmethod(a
typeof logisticregression)wasdevelopedfor binaryalternations(seeChapter20).Themethodsgivenherearesimplerwaysof describingandquantifyingdistribu-
tionandassociation.

Toassessthedistribution of anordinalor nominalvariable,we typically useabarchart (the term “histogram” should be reservedfor continuousvariables).;Figure 14.12is a bar chartshowing thedistribution of quotativevariantstakenfromacorpuscollectedin York (UK) in 2006(Durhameta1.2012).Weseethat
over60 percentof the tokensarebe like, with say coming in a distantsecond

.
place,under20 percent,andgo and zeroeachcomprisingabout 10percentof
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For nominaldatalike these,theorderof thebarsis arbitrary(in Figure14.12,it

is alphabetical)andthe conceptof the distancebetweenbarsis unde■ned.This

meansthat we cannotcalculatea meanor a medianfor a nominalvariablewith
three or more categories. The mode or most ■equent value, however, is well-

de■ned:here it is be like. The standarddeviation is also meaninglessin this

context.To reportthe dispersionof a nominalvariable,we canusethe indexof
dispersion,which is closeto 0 if mostof thedatafall in a singlecategory,andis
equalto 1 if thedataareequallydistributedamongall thecategories.If N is the
total count, k is the number of categories, and f is a vector of the counts for each

category,thentheindexofdispetsion; (k* (N2—sum(f2)))/ (N2* (k-l».Forthe
quotativedataoverall, the index of dispersionis 0.69. For the femalespeakers,
theindexis0.65,while for themalesit is0.76.This is aconciseway of sayingthat
themalesusedamorediversearrayof quotativeforms,althoughbelike is in the
majority for bothgroups(females65 percent,males56percent).

With ordinalvariables,agreaterrangeof descriptivestatisticscanbeused.The
values of an ordinal variable have a meaningful order, so concepts like “more,”

“less,” “highest,” and “lowest" are well de■ned.This allows us to use the median

and some of the measures related to it, like the interquartile range. However,

unlessavariablehasa largenumberof categories,this is not alwaysvery useful.
Variablesmeasuredon adiscretescaleareoftenbesttreatedasordinal,although
treatingthemascontinuousis a commonpractice.With sometypesof scales,an
ordinalanalysisis necessarybecausethespacingmaynotbeeven(slightly agree,
agree,strongly agree).We will now examinedata from an experimentwhere-
subjectsratedsentenceson aneleven-pointscale.

The■rstexperimentalitemisthesyntacticallyquestionablesentence,“Mary has
hadmoredrinksthansheshouldhavedoneso.”Thiswasratedby 335subjects.The
barchartin Figure14.13displaystherangeof ratingcategoriesonthex-axis,from0

to 10.Thenumberof responsesin eachcategoryis measuredonthey-axis.A chart ,
like this is agoodwaytovisualizeandbeginto interprettheresultsof acceptability
judgmenttasks(Chapter3),aswell asresponsesfromquestionnaires(Chapter6)or
experiments(Chapter7).WecanseefromFigure14.13thatthedistributionskews
toward the right, and the mode is the lowest possible rating (0 = completely

Descriptivestatistics

mode
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Figure14.13.Distributionof 335ratingsfor “Mary hashadmoredrinksthanshe
should have done so" (0 = completely impossible, [0 = perfectly natural)
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Figure14.14.Distributionof 335ratingsfor “Who didJohnseeGeorgeand?”
(0 = completelyimpossible,10= perfectlynatural)
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percentile, or middle value —is 2. As far as dispersion, the 25th percentile is 1 and
the 75th percentileis 4, makingthe interquartilerange4 —1= 3. The

inddx
of

dispersionis 0.94.

“
Figure 14.14showsthe distributionof a more clearly unacceptablesentence

Who dld JohnseeGeorgeand?”This distribution is much moreskewed.The
total range is still 10, and the mode is still 0, but now the median value is 0 aswell.

.1Theinterquartilerangeis l —0= 1,re■ectingalesswidely dispersedsetof scores.
2Accordingly,theindexof dispersionis considerablyless:0.71.

Whena variableis binary (alsocalleddichotomous),we canreporta kind of
:nean.For example,if thevariableis “yes” or “no” votes,we would counteach
‘ yes”as1,each“no” as0,andcalculateanordinarymeanusingthesenumbers.So
30“yes" votesand20 “no” voteswouldbereportedas30/ 50= 0.60= 60percent
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yes.Thismeasureof centraltendencyiscalledthemeanofaproportion, orp. (We

wouldbeunlikely to talk aboutthemedianor modeof aproportion.)To measure
dispersionfor a binary variable, we can take these Is and Osand calculatea
standard deviation, but the result is not independent from the mean. If the mean of

a proportionisp, the standarddeviationis v/(p * (l —p)). For this reason,the

standarddeviationof aproportion is not very usefulasastatistic.

We now turn to measuresof associationfor categoricaldata.In discussing
association above, we introduced several correlation coef■cients for continuous

variables.Of these,the SpearrnanandKendall coef■cientsaremostappropriate

for ordinalvariables(or if we haveoneordinalandonecontinuousvariable).

Supposewewantto checkapossiblecorrelationin thesentenceratingtask.We

want to know if the samesubjectswho gavehigh ratingsto the Mary sentence

werealsomorelenientinjudging theJohn/Georgesentence.We■ndaKendall tau
of 0.27,indicatingthatthereis indeedasmalldegreeof correlation.Thisvalueof

taumeansthatif wepick two of the335subjectsat random,theprobabilityof the

pairbeingconcordant,minustheprobabilityof thepairbeingdiscordant,is 0.27.

A concordantpair of subjectsagreedin their ranking of the two sentences.A

discordantpair of subjectsdisagreedin their ranking.
Whentherearea lot of ties in thedata(i.e.,agivenpairof subjectsgaveoneor

bothsentencesthesamerating),astherearehere,it is preferableto usea variant

calledGoodman-Kruskalgamma.The numeratorfor gammais the sameas for

tau: the numberof concordantpairsminus the numberof discordantpairs.The

denominatorissmaller:thetotalnumberof pairs,notcountingties.Sogammawill

alwaysbeat leastaslargeastau;hereit is 0.35.
If one variable is binary and the other is continuous, we describe association

with thepoint-biserialcorrelationcoe■icient,rpb,which canbecalculatedlike an
ordinaryPearsoncoe■icient.Soif we werewonderingif therewasanassociation

betweena subject’ssexandtheir ratingof thesentenceaboutMary drinking too
much,thereisprobablynone(er = —0.05).Notethatthisexampletreatstherating

asacontinuousvariable.
If bothvariablesarebinary,we reporttheir associationwith thephi cae■icient.

Again,thiscanbecalculatedlike 3Pearsoncoef■cient—covariancedividedby the

product of the standarddeviations—though the coefficientwill fall within a
restrictedrange,not thefull —1to +1 rangeavailablefor continuousvariables.

Wecanillustratethephi coef■cientwith dataon the 2,201peopleaboardthe
Titanic. Of 1,731 men, only 367 survived (21 percent). Of 470 women, 344

survived(73 percent).Therewas clearly a very different survival rate for men
andwomen;thequestionis how to quantify it. Herethephi coe■icientcomesout

as0.46.The correspondingphi for survival vs ageis only 0.10, indicating the

lesserimportanceof agefor survival.But theseareonly bivariatecorrelations;phi
for survival vs sex does not take age (or class) into account. In order to cover all

thesebasesatonce,we would usemultiple logistic regression(Chapter16).This

methodgivesa correctednumberfor theoddsof survival for womenvs men.

Descriptive statistics

Table14.2 Cross-tabulationsfor Survivalvssexandsurvival vsage
on theTitanic

SEX(phi=0.46)
SURVIVED female male total
yes 344 367 711
no 126 1364 1490
total 470 1731 2201

AGE (phi = 0.10)
SURVIVED adult child total
yes 654 57 711
no 1438 52 1490
total 2092 109 2201

Table14.3 Cross-tabulationof Yorkquotativevariantsby
grammaticalperson,observed

VARIANT

PERSON belike go say think other total
■rst 376 25 68 30 9 508
third 302 62 111 3 9 487
total 678 87 179 33 18 995

.Whenone or both of our variables is nominal, we begin to assesstheir association
9‘usmgacontingencytable,otherwiseknownasacross-tabulationor cross-tab.Just

aswemakescatterplotsto explorecontinuousdata,agood■rststepwith categorical

{ _
datais tomakeacross-tab.A cross-tabissimplyamatrixusingthecategoriesof one

J
,

variable for the columns and the categoriesof the other variable for the rows. Each
cell is ■lledwith the numberof observationsor casesfor that combinationof

.
categories.So if one variable had three categories (red, blue, green) and the other

M,had four (triangle, square, circle, star), we would have a 3x4 table, and each of the
twelvecellswould containa numberrepresentingthe quantityof that particular

,, coloredshape.Table14.2showscross-tabsfor theTitanicdatadiscussedabove.
We usually want to know if two variables are actually associated, and if they

.
are,.the strengthof the association.The ■rst question is answeredusing a

.f Slgnt■cancetest; indeed, all of the correlations discussed above have their corre-
1.spondingsigni■cancetests(seeChapter15.)

‘
Thesecondquestioncanbeansweredwith CramerisV,whichrangesfrom 0(no

‘
association) to 1 (perfect association). Cramer’s V is a useful metric that can be
appliedto nominaldataregardlessof theshapeof thetable.If the table is 2x2

, -:_Cramer’sV equalsthe absolutevalue of phi; otherwisewe derive it from
chi:

. Squared.To understandchi-squared,we returnto theYork quotativedata.
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Table14.4 Cross-tabulationof Yorkquotativevariantsby
grammaticalperson.expected(ifno association)

VARIANT

PERSON be like go say think other total

■rst 346.2 44.4 91.4 16.8 9.2 508
third 331.8 42.6 87.6 16.2 8.8 487
total 678 87 179 33 18 995

be like go say think other

■
rs

t
th

ird

Figure 14.15. Mosaic plot of Yorkquotative variants by grammatical person

WecanuseTable14.3——or thecorrespondingmosaicplot in Figure14.15—and

seethat the ■rst-personcontexthasslightly morebe like andmuchmore'th-ink,
while the third-personcontexthasmorego andsay.We suspectan assoc1ation:
knowing thegrammaticalpersonof aquotativesentencehelpspredictthequota-
tive variant.

If therewereno associationbetweenpersonandverb,butstill thesameoverall
proportionswithin thepersonandverbcategories(thesearecalledthemarginal
■equencies),thecontingencytablewould look like Table14.4.

‘Toobtainchi-squared,wesubtracteach“expected”frequencyE (mTable14.4)
■omthe corresponding“observed”frequency0 (in Table3), squarethe result,
divideby theexpectedvalueE,andthentaketheoverall sum,by addingeachcell.
This formula for chi-squared,which representshow dependentthe two variables

are,appearsin (1). In this case,chi-squaredis 55.8.-

2
_

n (01" E02
.

1

x -—2;
E,- ( )

While we would certainlybe interestedin whetherquotativeusedifferssigni■-
cantlybetween■rst-andthird-personsubjects,we leavethedetailsof signi■cance

testslike thesefor Chapter15.
To obtainCramer’sV —which measuresthestrengthof an association(here,

betweenquotativechoiceand grammaticalperson)—we divide chi—squaredby

Descriptive statistics

N (the total count) times k-l (the numbero‘f categoriesof the variable with
fewer categoriesminus one), and then take the squareroot, as summarizedin
(2). In the case of grammatical person and quotative choice, Cramer’s
V = ‘/(55.8/(995 * (2 —l))) = 0.23.This is not a very strongassociation,but
it is largerthanthatbetweenquotativechoiceandgender,whereCramer’sV = 0.12.
Genderis lessassociatedwith quotativechoicethangrammaticalpersonis.

X2

¢c= m (2)

Another approachto organizingcategoricaldata in linguistics is implicational
scaling; elsewhere,the sameconceptis often called Guttmanscaling. It is a
procedureemployedwith a numberof binary variablesor questions,if they can
be placed in a consistent order, where the answer to one implies the answer to
others.The original useof implicationalscalingin linguisticswasby De Camp
(1971)in astudyof JamaicanCreole.DeCampshowedthatif aspeakerused,for
example,the form nyam for “cat,” then they de■nitelyalso usednanny for
“granny” —but not necessarilythe other way around.Similarly, using nanny
impliedusingpickni for “child,” but not vice versa.

If asetof linguisticvariablesis foundto formanimplicationalscale,thismeans
thereis astrongtypeof associationbetweenthem.Thevaluesof thevariablesdo

3 not co-occurfreely,which would leadto 2“ combinationsfor n binaryvariables;
j instead,they areconstrainedby the scaling,allowing asfew asn + l combina-
—tions. Implicational scalingtypically Scaleslinguistic variablesrelativeto each

other(in thehorizontaldimension)aswell asspeakersrelativeto eachother(in the
_. verticaldimension).With implicationalscales,varietiescanbecomparednotonly
' in termsof theorderingof linguistic featuresandspeakers,butalsoin termsof the

overallscalability,or goodnessof ■t,of the scalingmodel. Implicationalscaling
has been found to be particularly useful in relation to questionsconcerning
individual variation,asopposedto statisticalapproachesthat aggregatedatafor
individualsinto groups.For this reason,implicationalscalescontinueto beused,
especiallyin studiesof creoles,bilingualism, and secondlanguageacquisition
(seeRickford 2002).

If a datasetis “exploratory” —gatheredbasedon an idea,but not a
speci■chypothesis—then descriptivestatisticscan suggesthypothesesto test.
With “con■rmatory”data,wewill alreadyhaveoneor morehypothesesin mind.
In testingthem,we want to know how our samplerelatesto a largerpopulation:

-5 inferentialstatistics(signi■cancetestsin Chapter15;regressionin Chapter16).
When two subgroupsof our data (malesand females,■rstpersonand third

person,treatmentandcontrol,etc.)differ on somedescriptivestatistic,we o■en
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want to know theprobability thatthetwo samplescouldactuallyderivefrom the

sameunderlyingpopulation,despitethesurfacedifference.In otherwords,wesee
what looks like an effect:a differencebetweengroups.Wewant to estimatethe

size of the effect (descriptivestatistics),but also decide whether it is a real,

replicable,signi■canteffect,or potentiallyamere■uke(inferentialstatistics).
There are two situations when descriptive statistics can be enough, and infer-

ential statisticsareunnecessaryor even inappropriate.The ■rst,as mentioned

above,iswhenthepurposeof apieceof researchispurelyexploratory,designedto
raisequestionsratherthanansweringthem.The othersituationis whenthe data

arenot asamplefrom a largerpopulation.Whenacandidatewins anelection,we
donot askaboutthestatisticalsigni■canceof thevictory margin.Assumingthere

were no voting improprieties,the candidatewith more votes—evenone more
vote—isthewinner.And if wewerestudyingthespeechof asmallvillage,with no
plan to compareit to anyotherplace—andif we interviewedeverypersonin the

village —we would not haveto worry aboutany observedageor genderdiffer—

encesgeneralizingto a largergroupof people.(However,we would still haveto

worry aboutanalyzinga large enoughsampleof speechfrom eachpersonto
generalizeaboutthat individual’shabits.)

Descriptivestatisticsareespeciallyvaluablewhendatasetsarelarge,when it

wouldbeoverwhelmingto try to visualizeor describethepatternsin therawdata.
Descriptivestatisticsareavaluablesetof simpli■cationsthat allow usto capture
theessenceof adataset—andcompareit to otherdalasets—usinga few numbers,

mostof which havea simplederivationandinterpretation.
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