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OUTLINE

• Some basic concepts in machine translation design 

• Evaluating translation quality using BLEU score 

• The generative models underlying Candide, the 
influential statistical machine translation system



THE NOISY CHANNEL 
MODEL OF TRANSLATION

Warren Weaver, 1949 Rockefeller 
Foundation memorandum 
Translation:  
 
“When I look at an article in 
Russian, I say: this is really written 
in English, but it has been coded 
in some strange symbols. I will 
now proceed to decode.” 

argmaxe P(e) P(r | e)



Machine translation received massive US government 
funding in the ‘50s and early ‘60s, but made next to no 
progress on the core problems.



The ALPAC report (1964) recommended that 
government-funded MT research focus on:  

1. practical methods for evaluation of translations 
… 
3. evaluation of quality and cost of various sources of 
translations 
… 
9. production of adequate reference works for the 
translator, including the adaptation of glossaries that 
now exist primarily for automatic dictionary look-up in 
machine translation



This (ultimately) lead researchers to adopt a clearer 
problem statement, the modeling of translator behavior.



Effective domain-general machine translation systems 
consist of… 

data-driven, language-agnostic models of translator 
behavior… 

paired with language-specific models of linguistic 
analysis and generation.
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the [blue house]i la [maison bleue]i

λx. HOUSE(x) & BLUE(x)



THE QUADRATIC  
GROWTH PROBLEM

As the number of languages a system supports (n) 
increases, the number of translation models needed 
grows quadratically to n2 - n* 

Thus, when developing multilingual translation systems, 
we place language-specific methods in the monolingual 
analysis and generation models so the translation 
model is as language-independent as possible.

*Note that translation models need not be invertible.



In the early 1990s, a team at IBM Research built 
Candide, the first modern statistical machine 
translation system. We will be reviewing the intuitions 
behind Candide in great detail.



BLEU SCORE 
HANDOUT



Candidate:  
Many will lose their right to a pension in their own name 
because of their husband ’s income . 

Reference: Many will lose their right to draw a pension 
with their own name because of the income of their 
husband .



Candidate:  
Many will lose their right to a pension in their own name 
because of their husband ’s income . 

Reference: Many will lose their right to draw a pension 
with their own name because of the income of their 
husband .



Candidate:  
Many will lose their right to a pension in their own name 
because of their husband ’s income . 

Reference: Many will lose their right to draw a pension 
with their own name because of the income of their 
husband . 

p1: 17 / 19 = .895	 	 	 	  
p2: 12 / 18 = .667	 	 	 	 GMn	 	 = .544  
p3:   8 / 17 = .471	 	 	 	 BP 	 	 = .900	 	  
p4:   5 / 16 = .313	 	 	 	 BLEU		 = .490



BLEU is one of the first evaluation metrics which is well-
correlated with human judgements of translation quality.



THE CANDIDE 
STATISTICAL MACHINE 
TRANSLATION MODELS

[Brown et al. 1990, 1993, Knight 1999]



TRANSLATION  
STORY ELEMENTS

• The translation model P(t | s) helps to select likely translations: 
 
P(house | maison) > P(dog | maison) 

• The language model P(t) helps with source-to-target polysemy: 
 
P(in the end zone)> P(on the end zone) 

• It also helps to sort out word order: 
 
P(the dog runs) > P(runs dog the) 

• Decoding helps us find “likely” “stories”.



MODEL I: BASIC STORY

1. Given a source S of length |S|, select a target length  
|T| according to P(|T| | |S|) 

2. Populate T with tokens t according to P(t | s) 

3. Reorder the tokens in T to maximize P(t0…t|T|)



MODEL I: TRANSLATION MODEL  
ESTIMATION VIA THE EM ALGORITHM
1. Compute P(t| s), the MLE conditional probability distribution of s and t co-occurring 

2. For n iterations: 

1. Initialize a(s, t) = 0, Z(t) = 0 for all s ∈ S, t ∈ T. 

2. For all pairs of sentences S, T: 
 
For all s ∈ S, t ∈ T,  
 
    a(s, t) = a(s, t) + P(t | s)  
    Z(t) = Z(t) + P(t | s) . 

3. For all s, t, let 
 
P(t | s) = a(s, t) / Z(t)  
 
then normalize P(t | s).



Source: 

LA MAISON BLEUE 

LA MAISON 

MAISON 

Target: 

THE BLUE HOUSE 

THE HOUSE 

HOUSE



ITERATION 0 (MLE ONLY)

P(HOUSE | MAISON) 	 = .500 

P(BLUE | MAISON) 	 	 = .167 

P(THE | MAISON)		 	 = .333



ITERATION 1

P(HOUSE | MAISON) 	 = .440 

P(BLUE | MAISON) 	 	 = .233 

P(THE | MAISON)		 	 = .327



ITERATION 2

P(HOUSE | MAISON) 	 = .478 

P(BLUE | MAISON) 	 	 = .196 

P(THE | MAISON)		 	 = .325



ITERATION 10

P(HOUSE | MAISON) 	 = .643 

P(BLUE | MAISON) 	 	 = .077 

P(THE | MAISON)		 	 = .280



MODEL II

1. Given a source S of length |S|, select a target length  
|T| according to P(|T| | |S|) 

2. For each source token si and the null token, “align” it 
with some tj according to P(i, j) 

3. Translate all aligned source/target si, tj pairs 
according to P(tj | si).



MODEL III
Distortion parameters are now sensitive to lengths: 

P(i | j, |S|, |T|) is the probability that source token j 
corresponds with (i.e., is aligned to and is translated 
by) target token i when the source is |S| tokens long 
and the target is |T| tokens long 

Each source word has a fertility parameter: 

	 P(3 | s) is the probability that s aligns to exactly 3 	 	
target words



MODEL III
P(n | s): target token s aligns to n source tokens 

P(t | ∅): a target token t aligns to no source token 

P(t | s): target token t is generated by aligned source token s 

P(j | i, |S|, |T|): target token t appears in position j when it is 
generated by aligned source token in position i and the 
source and target are |S| and |T| long, respectively 

P(t0…t|T|): the target consists of t0…t|T|



MODEL III

Mary	 did	 not	 	 	 slap		 	 	 	 	 the	 green 	 witch 

Mary	 	 not	 slap		 slap		 slap		 	 	 the	 green 	 witch	  

Mary 	 	 not	 slap 	 slap		 slap		 	 ∅	 the	 green	 witch	  

Maria 	 	 no	 dió 		 una		 bofetada		 a 	 la	 verde	 bruja	  

Maria 	 	 no	 dió	 	 una		 bofetada 	 a	 la 	 bruja	 verde	

[h/t: Kevin Knight]



EM ALGORITHM FOR 
MODEL III

• One candidate alignment:  
 
    fd(8 | 5, 7, 9) = fd(8 | 5, 7, 9) + 1… 

• Two candidate alignments: 
 
    fd(8 | 5, 7, 9) = fd(8 | 5, 7, 9) + 1/2 
    fd(8 | 6, 7, 9) = fd(8 | 6, 7, 9) + 1/2 

• But, the set of possible alignments grows very fast so we 
use Viterbi training rather than all possible alignments.



BASIC PHRASE-BASED 
TRANSLATION MODELS

1. Segment source S into phrases s1…sN 

2. Reorder each si according to distortion model 

3. Translate each si according to phrasal translation 
model

[Och & Ney 2004]



PHRASAL ALIGNMENTS

Maria 	 	 no	 [dió		 una		 bofetada] 	 a	 la 	 	 bruja	 verde 

Mary	 did	 not	 	 	 slap		 	 	 	 	 the	 	 green	 witch



PHRASAL ALIGNMENT 
TEMPLATES WITH GAPS

… ne voudrais 	 pas 	 voyager	 	 par chemin de fer 

…   would	 not	  like	 traveling		 by		    railroad

[Bansal et al. 2011]



HIERARCHICAL  
PHRASAL ALIGNMENT

he		 adores	 [ listening	 	 	 [ to 	 	 music ]j ]i  

kare	 ha	 [ [ ongaku wo ]j	 kiku ]i no  ga	 daisuki	 desu

[Knight & Yamada 2001, Chiang 2005]



OPEN-SOURCE 
SOFTWARE

• EGYPT (CSLP/JHU 1999 team): IBM models I-V 

• GIZA++ (Och & Ney 2003): optimized IBM models 

• MOSES (Koehn 2009): IBM model "VI" onward...
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