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Machine learning systems used in speech and language processing
employ linguistic units like words, phonemes, n-grams, etc., as
multinomial features. Each multinomial feature with k levels can then
one-hot encoded as a binary vector of length k − 1. For example, a
multinomial variable ranging over {dc, lower,mixed, title, upper}. can be
exactly encoded using {0, 1}4:

dc → [0, 0, 0, 0]
lower → [1, 0, 0, 0]
mixed → [0, 1, 0, 0]
title → [0, 0, 1, 0]

upper → [0, 0, 0, 1]
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An embedding is a function which map words (etc.) onto vectors of real
numbers. That is, an embedding is a function V ×Òk where V is the
vocabulary and k is a hyperparameter. These real number vectors are an
alternative to the sparse boolean vectors produced by one-hot encoding.
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One can imagine an in�nitude of embedding functions, including random
embeddings that (deterministically) assign real vectors to each word
(etc.). For an embedding to be useful—i.e., superior to a one-hot
embedding—it needs to cluster words with similar linguistic
behaviors/properties together.
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The idea has been around for several decades but has become a very
important component of neural network approaches to language
processing. More generally, the subarea that studies how neural networks
induce representations of linguistic data is sometimes called
representation learning, and is the subject of two regularly-scheduled
ACL workshops,

• the Workshop on Representation Learning for NLP (RepL4NLP) and
• Analyzing and interpreting neural networks for NLP (BlackboxNLP).
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Introductory notions
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The distributional hypothesis

The idea that we can understand words (or sentences, or documents) by
analyzing co-occurrence statistics is sometimes known as the
distributional hypothesis. Two obligatory quotes:

In other words, di�erence in meaning correlates with di�erence
in distribution. (Harris 1954:43)

You shall know a word by the company it keeps. (Firth 1957:11)

But exactly what form should these representations take? And how
should they be induced?
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The bag of words model

One common—and unexpectedly e�ective—technique used to represent
sentences or documents is the bag of words (BOW) representation. This
can be as simple as counting all the words in a document.

>>> import collections
>>> bag = collections.Counter(tokens)
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Text preparation

Before counting tokens in this fashion, one may wish to

• tokenize into sentences and tokens,
• remove stop-words,
• lemmatize or stem, and
• case-fold (though see Church 1995).

When working with a large collection of documents, one may also wish to

• deduplicate the document collection,
• exclude very long and very short documents, and
• exclude documents containing unexpected characters.
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Term-document and word
co-occurrence analysis
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Term-document matrix example (after J&M, §6.3)

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

In-memory, we prefer a sparse representation:

{"As You Like It": [(1, 1), (2, 114), (3, 36), ...], ...}
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From term-document matrices to vectors
We can think of
• the column vector [1, 114, 36, 20] as a 4d “representation” of the
document As You Like It, and
• the row vector [36, 58, 1, 4] as a 4d “representation” of the token
food.

Figure: The words battle and fool in four works of Shakespeare (after J&M, §6.3).
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Term weighting: motivations

Raw token frequencies are often less informative than we’d like, because

• ubiquitous words tend to carry little information (particularly
function words), and
• words that occur in many documents tend to bear less information
than words that occur in few documents.

E.g., as Church (2000) notes, not many documents mention Noriega, but
those that do are in some sense “about” Noriega.
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Term frequency

Term frequency, denoted tft,d, is the number of times a token t occurs in
document d. It is often computed in log-space as

log tft,d = log(cd(t) + 1)

or

log tft,d =

{
1 + log cd(t) if cd(t) > 0
0

.
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Document frequency

Document frequency, denoted dft, is the number of documents a token t
occurs in. Inverse document frequency, idft, is this quantity scaled by the
number of documents N. This is also often computed in log-space, as

log idft = log(
N
dft
)

= log N − log dft
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TF-IDF weighting

These statistics are often combined for a given term to give term
frequency-inverse document frequency (TF-IDF):

tdidft,d = log tft,d + log idft

Using this instead of the raw frequencies tends to give more informative
representations of a term’s a�liation for a document.
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TF-IDF term-document matrix example

As You Like It Twelfth Night Julius Caesar Henry V
battle .07 .00 .22 .28
good .00 .00 .00 .00
fool .02 .02 .00 .01
wit .05 .04 .02 .02
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Word co-occurrence matrix example (after J&M, §6.3)

aardvark computer data result
cherry 0 2 8 9
strawberry 0 0 0 1
digital 0 1,679 1,683 85
information 0 3,325 3,982 378

Two minor implementational challenges here are

• to avoid counting (wi,wj) and (wj,wi) separately, and
• to avoid counting (wi,wi).
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Pointwise mutual information: motivations

Raw co-occurrence frequencies are often less informative than we’d like,
because ubiquitous, low-information words tend to co-occur with each
other. We’d rather ask whether a word is particularly associated with
another word.
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Pointwise mutual information: de�nitions

Pointwise mutual information (Church and Hanks 1990)
PMI(wi,wj) : W × W → Ò is given by

PMI(wi,wj) = log
P(wi,wj)
P(wi)P(wj)

= log P(wi,wj) − log P(wi) − log P(wj).
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Positive pointwise mutual information

PMI has the range (−∞,∞), but negative values are somewhat strange:
they indicate that two words occur less often than we might expect by
chance. In positive pointwise mutual information (PPMI), we simply
replace negative PMI values with 0, thus

PPMI(wi,wj) = max(PMI(wi,wj), 0)
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PPMI examples (after J&M, §6.3)

computer data pinch sugar
apricot 2.25 2.25
pineapple 2.25 2.25
digital 1.66
information 0.57
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Phrase mining

The meanings of some frequent phrases (e.g., Air Canada) cannot be
directly discerned from their constituents (i.e., they are not fully
compositional). Mikolov et al. (2013) propose a simple method to induce
“phrases”. Given a sequence of two tokens wiwj, let us de�ne the phrase
score ps(wi,wj) : W × W → Ò such that

ps(wi,wj) =
c(wiwj) − δ
c(wi)c(wj)

where δ ∈ Ò+ is a user-speci�ed hyperparameter. Bigrams whose phrase
score exceeds a certain threshold are treated as a single token (e.g.,
Air_Canada) for subsequent processing. Implementation of this and
related methods can be found in the phrases module of Gensim
(Řehůřek and Sojka 2010).
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Contexts

We can de�ne contexts however we wish. Consider the sentence The
moment one learns English, complications set in.

Brown clusters {one}
Word2Vec, h = 2 {moment, one, English, complications}
Structured word2vec, h = 2 {(moment, −2), (one, −1), . . . }
Dependency contexts {(one, nsubj), (English, dobj), . . . }

Table: Example contexts, after Eisenstein (2019:312).
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Induced word embeddings
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Cosine similarity: motivation

Embeddings represent words as (or embed words in) k-dimensional
vectors of real numbers (Òk). Between any two vectors of the same
dimensionality, there is an (acute) angle. We can use the magnitude of
this angle to measure two vectors’ “similarity”.
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Cosine similarity: de�nition

Cosine similarity is de�ned as

cos(v1, v2) =
v1 · v2

‖v1‖2 × ‖v2‖2

where v1 and v2 are two vectors, · is the dot product (e.g.,
∑
i v1,i × v2,i),

and ‖v‖2 is the Euclidean norm of v (e.g.,
√∑

i v2i ). Like the cosine of an
acute angle, this ranges from [0, 1] and takes its maximal value when the
angle is 0°.
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Embedding as matrix factorization

Given a matrix C = {ci,j} storing the co-occurrence statistics for a target i
and a context j, we can obtain embeddings by approximating ci,j with a
function of a target embedding ui and a context embedding vj. That is, we
wish to �nd embeddings such that minimize the reconstruction error

min
u,v
‖C − C̃(u, v)‖2

where C̃(u, v) is the reconstruction of the count matrix C given by
embeddings u and v.
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Latent semantic analysis

One of the best-known examples of this approach is known as latent
semantic analysis (LSA) or latent semantic indexing (Deerwester et al.
1990). Let V be the number of terms, K the size of the desired embedding,
and |C| the number of contexts. Then C̃ is given by U S V> where
U ∈ ÒV×K , S ∈ ÒK×K , and V ∈ Ò |C |×K . Thus each element of C ci,j is given
by

∑K
k=1 ui,ksk,kvj,k. Finding U S V

> approximating C is a well-studied
problem known as singular value decomposition and is implemented in
many linear algebra libraries.
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LSA demo
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Word2Vec

The highly-e�ective CBOW and skipgram embedding methods (together
known as word2vec) were proposed by Mikolov et al. (2013). They �nd
the skipgram model is generally more e�ective in intrinsic evaluation.
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Continuous bag-of-words: motivations

The continuous bag-of-words (CBOW) model represents the local context
for a target word wm using the average of the embeddings of words in the
window m − h,m − h + 1, . . . ,m − 1,m + 1, . . . ,m + h − 1,m + h where h
is the size of the window. This is continuous because we condition on a
continuous vector constructed from the embeddings, and it is a
bag-of-words model because we discard positional information within
the window and ignore words outside the window.
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Continuous bag-of-words: de�nition

The context embedding for target position m is given by

v̄m =
1
2h

h∑
n=1

vm−n + vm+n

=
1
h

h∑
n=1

vm−n +
1
h

h∑
n=1

vm+n

where v are the term embeddings.
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Continuous bag-of-words: optimization

We then optimize u and v to approximate the log-likelihood of the corpus
frequencies

log p(w) ≈
M∑
m=1

log p(wm | m − h, . . . ,m + h)

=
M∑
m=1

log
exp(uwm · v̄m)∑V
j=1 exp(uj · v̄m).
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Skipgrams

In the CBOW formulation, we predict target words given their context. In
the skipgrams model, we predict contexts given words. Let hm be a
randomly sampled neighborhood size sampled from the uniform
distribution {1, 2, . . . , h}. Then we optimize u and v to approximate the
log-likelihoods of the corpus frequencies

log p(w) ≈
M∑
m=1

hm∑
n=1

log p(wm−n | wm) + log p(wm+n | wm)

=
M∑
m=1

hm∑
n=1

log
exp(uwm−n · vwm)∑V
j=1 exp(uj · vwm)

+ log
exp(uwm+n · vwm)∑V
j=1 exp(uj · vwm)
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Alternatives

• Brown et al. (1992) clusters are discussed in the Eisenstein text at
length.
• GloVe (Pennington et al. 2014) attempts to directly approximate
co-occurrence probabilities, compressing them into embeddings
using least-squares.
• fastText (Bojanowski et al. 2017) adds several new tricks to the CBOW
approach, including learned positional weights and character
n-gram vectors (extracted from the target word) concatenated to the
bag of words.
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Software comparison

• word2vec: Apache 2.0 license, installs C command-line tool
word2vec, abandonware
• gensim.models.Word2Vec: GNU LGPL 2.1 license, Python
interface, great documentation, a bit ine�cient
• GloVe: Apache 2.0 license, installs C command-line tool glove
(and friends), “abandonware”
• fastText: MIT license, installs C++ command-line tool fasttext,
also has a handy “supervised mode” for simple document
classi�cation problems
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Pretrained embeddings

There are many pre-trained embeddings available (usually in a simple
tabular format), e.g.:

• word2vec: 100 billion English words from Google News
• GloVe: 27 billion English words from Twitter
• GloVe: 840 billion English words from the Common Crawl
• fastText: Data from 157 languages from the Common Crawl and
Wikipedia

But, training embeddings for your language, domain, and/or data is easy,
reasonably fast, and requires no specialized hardware. And, embeddings
trained on small amounts of relevant data may be very e�ective.

http://wellformedness.com/courses/LING83600

https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
http://nlp.stanford.edu/data/glove.twitter.27B.zip
http://nlp.stanford.edu/data/glove.840B.300d.zip
https://github.com/facebookresearch/fastText/blob/master/docs/crawl-vectors.md
https://github.com/facebookresearch/fastText/blob/master/docs/crawl-vectors.md
http://wellformedness.com/courses/LING83600


Contextual embeddings: motivations
Newer contextual embedding models like ELMo (Peters et al. 2018) and
BERT (Devlin et al. 2019) do not give us a single vector for each word type,
but rather a separate vector for each word token which also takes that
words’ context into account. However, the creation of such models
require an enormous amount of computing resources (and power, and
CO2 emissions) to train from scratch (Strubell et al. 2019). For these, one
is strongly recommended to make use of pre-trained models, e.g.:

• bert-base-cased: cased English text
• bert-large-uncased: case-folded English text (large model)
• bert-base-multilingual-cased: cased text in 104
languages
• CamemBERT: cased multi-genre French text
• rubert-base-cased: cased Russian Wikipedia and news text
• . . .
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