
177

C H A P T E R 15

Concrete Recurrent Neural
Network Architectures

After describing the RNN abstraction, we are now in place to discuss specific instantiations of it.
Recall that we are interested in a recursive function si D R.xi ; si�1/ such that si encodes the
sequence x1Wn. We will present several concrete instantiations of the abstract RNN architecture,
providing concrete definitions of the functions R and O . ese include the Simple RNN (S-
RNN), the Long Short-Term Memory (LSTM) and the Gated Recurrent Unit (GRU).

15.1 CBOW AS AN RNN
On particularly simple choice of R is the addition function:

si DR.xi ; si �1/ D si�1 C xi

yi DO.si / D si

(15.1)

si ; yi 2 Rds ; xi 2 Rds :

Following the definition in Equation (15.1), we get the continuous-bag-of-words model:
the state resulting from inputs x1Wn is the sum of these inputs. While simple, this instantiation
of the RNN ignores the sequential nature of the data. e Elman RNN, described next, adds
dependence on the sequential ordering of the elements.¹

15.2 SIMPLE RNN
e simplest RNN formulation that is sensitive to the ordering of elements in the sequence is
known as an Elman Network or Simple-RNN (S-RNN). e S-RNN was proposed by Elman
[1990] and explored for use in language modeling by Mikolov [2012]. e S-RNN takes the
following form:

si DR.xi ; si�1/ D g.si�1W s C xi W x C b/

yi DO.si / D si

(15.2)

si ; yi 2 Rds ; xi 2 Rdx ; W x 2 Rdx�ds ; W s 2 Rds�ds ; b 2 Rds :

¹e view of the CBOW representation as an RNN is not a common one in the literature. However, we find it to be a good
stepping stone into the Elman RNN definition. It is also useful to have the simple CBOW encoder in the same framework as
the RNNs as it can also serve the role of an encoder in a conditioned generation network such as those described in Chapter 17.

178 15. CONCRETE RECURRENT NEURAL NETWORK ARCHITECTURES

at is, the state si�1 and the input xi are each linearly transformed, the results are added
(together with a bias term) and then passed through a nonlinear activation function g (commonly
tanh or ReLU). e output at position i is the same as the hidden state in that position.²

An equivalent way of writing Equation (15.2) is Equation (15.3), both are used in the
literature:

si DR.xi ; si�1/ D g.Œsi�1Ixi �W C b/

yi DO.si / D si

(15.3)

si ; yi 2 Rds ; xi 2 Rdx ; W 2 R.dxCds/�ds ; b 2 Rds :

e S-RNN is only slightly more complex than the CBOW, with the major difference
being the nonlinear activation function g. However, this difference is a crucial one, as adding the
linear transformation followed by the nonlinearity makes the network sensitive to the order of the
inputs. Indeed, the Simple RNN provides strong results for sequence tagging [Xu et al., 2015]
as well as language modeling. For comprehensive discussion on using Simple RNNs for language
modeling, see the Ph.D. thesis by Mikolov [2012].

15.3 GATED ARCHITECTURES
e S-RNN is hard to train effectively because of the vanishing gradients problem [Pascanu
et al., 2012]. Error signals (gradients) in later steps in the sequence diminish quickly in the back-
propagation process, and do not reach earlier input signals, making it hard for the S-RNN to
capture long-range dependencies. Gating-based architectures, such as the LSTM [Hochreiter
and Schmidhuber, 1997] and the GRU [Cho et al., 2014b] are designed to solve this deficiency.

Consider the RNN as a general purpose computing device, where the state si represents a
finite memory. Each application of the function R reads in an input xiC1, reads in the current
memory si , operates on them in some way, and writes the result into memory, resulting in a new
memory state siC1. Viewed this way, an apparent problem with the S-RNN architecture is that
the memory access is not controlled. At each step of the computation, the entire memory state is
read, and the entire memory state is written.

How does one provide more controlled memory access? Consider a binary vector g 2

f0; 1gn. Such a vector can act as a gate for controlling access to n-dimensional vectors, using
the hadamard-product operation x ˇ g:³ Consider a memory s 2 Rd , an input x 2 Rd and a
gate g 2 0; 1d . e computation s0 g ˇ x C .1 � g/ˇ .s/ “reads” the entries in x that cor-
respond to the 1 values in g, and writes them to the new memory s0. en, locations that weren’t

²Some authors treat the output at position i as a more complicated function of the state, e.g., a linear transformation, or an
MLP. In our presentation, such further transformation of the output are not considered part of the RNN, but as separate
computations that are applied to the RNNs output.
³e hadamard-product is a fancy name for element-wise multiplication of two vectors: the hadamard product x D u ˇ v

results in xŒi� D uŒi� � vŒi�.

15.3. GATED ARCHITECTURES 179

read to are copied from the memory s to the new memory s0 through the use of the gate (1 � g).
Figure 15.1 shows this process for updating the memory with positions 2 and 5 from the input.

8

11

3

7

5

15

s

0

1

0

0

0

1

10

11

12

13

14

15

1

0

1

1

1

0

8

9

3

7

5

8

g (1 – g)x s

⨀ ⨀+

Figure 15.1: Using binary gate vector g to control access to memory s0.

e gating mechanism described above can serve as a building block in our RNN: gate
vectors can be used to control access to the memory state si . However, we are still missing two
important (and related) components: the gates should not be static, but be controlled by the
current memory state and the input, and their behavior should be learned. is introduced an
obstacle, as learning in our framework entails being differentiable (because of the backpropagation
algorithm) and the binary 0-1 values used in the gates are not differentiable.⁴

A solution to the above problem is to approximate the hard gating mechanism with a
soft—but differentiable—gating mechanism. To achieve these differentiable gates, we replace the
requirement that g 2 f0; 1gn and allow arbitrary real numbers, g0 2 Rn, which are then pass
through a sigmoid function �.g0/. is bounds the value in the range .0; 1/, with most values
near the borders. When using the gate �.g0/ˇ x, indices in x corresponding to near-one val-
ues in �.g0/ are allowed to pass, while those corresponding to near-zero values are blocked. e
gate values can then be conditioned on the input and the current memory, and trained using a
gradient-based method to perform a desired behavior.

is controllable gating mechanism is the basis of the LSTM and the GRU architectures,
to be defined next: at each time step, differentiable gating mechanisms decide which parts of the
inputs will be written to memory, and which parts of memory will be overwritten (forgotten).
is rather abstract description will be made concrete in the next sections.

15.3.1 LSTM
e Long Short-Term Memory (LSTM) architecture [Hochreiter and Schmidhuber, 1997] was
designed to solve the vanishing gradients problem, and is the first to introduce the gating mech-
anism. e LSTM architecture explicitly splits the state vector si into two halves, where one half

⁴It is in principle possible to learn also models with non-differentiable components such as binary gates using reinforcement-
learning techniques. However, as the time of this writing such techniques are brittle to train. Reinforcement learning tech-
niques are beyond the scope of this book.

180 15. CONCRETE RECURRENT NEURAL NETWORK ARCHITECTURES

is treated as “memory cells” and the other is working memory. e memory cells are designed to
preserve the memory, and also the error gradients, across time, and are controlled through differ-
entiable gating components—smooth mathematical functions that simulate logical gates. At each
input state, a gate is used to decide how much of the new input should be written to the memory
cell, and how much of the current content of the memory cell should be forgotten. Mathemati-
cally, the LSTM architecture is defined as:⁵

sj D R.sj �1; xj / DŒcj Ihj �

cj Df ˇ cj �1 C i ˇ z

hj Doˇ tanh.cj /

i D�.xj W xi C hj �1W hi /

f D�.xj W xf C hj �1W hf /

o D�.xj W xo C hj �1W ho/

z D tanh.xj W xz C hj �1W hz/

yj D O.sj / Dhj

(15.4)

sj 2 R2�dh ; xi 2 Rdx ; cj ; hj ; i ; f ; o; z 2 Rdh ; W xı 2 Rdx�dh ; W hı 2 Rdh�dh :

e state at time j is composed of two vectors, cj and hj , where cj is the memory com-
ponent and hj is the hidden state component. ere are three gates, i , f , and o, controlling
for input, forget, and output. e gate values are computed based on linear combinations of the
current input xj and the previous state hj �1, passed through a sigmoid activation function. An
update candidate z is computed as a linear combination of xj and hj �1, passed through a tanh
activation function. e memory cj is then updated: the forget gate controls how much of the
previous memory to keep (f ˇ cj �1), and the input gate controls how much of the proposed
update to keep (i ˇ z). Finally, the value of hj (which is also the output yj) is determined based
on the content of the memory cj , passed through a tanh nonlinearity and controlled by the output
gate. e gating mechanisms allow for gradients related to the memory part cj to stay high across
very long time ranges.

For further discussion on the LSTM architecture see the Ph.D. thesis by Alex Graves
[2008], as well as Chris Olah’s description.⁶ For an analysis of the behavior of an LSTM when
used as a character-level language model, see Karpathy et al. [2015].
⁵ere are many variants on the LSTM architecture presented here. For example, forget gates were not part of the original
proposal in Hochreiter and Schmidhuber [1997], but are shown to be an important part of the architecture. Other variants
include peephole connections and gate-tying. For an overview and comprehensive empirical comparison of various LSTM
architectures, see Greff et al. [2015].
⁶http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

15.3. GATED ARCHITECTURES 181

..

e vanishing gradients problem in Recurrent Neural Networks and its Solution Intu-
itively, recurrent neural networks can be thought of as very deep feed-forward networks,
with shared parameters across different layers. For the Simple-RNN [Equation (15.3)], the
gradients then include repeated multiplication of the matrix W , making it very likely for the
values to vanish or explode. e gating mechanism mitigate this problem to a large extent by
getting rid of this repeated multiplication of a single matrix.

For further discussion of the exploding and vanishing gradient problem in RNNs,
see Section 10.7 in Bengio et al. [2016]. For further explanation of the motivation behind
the gating mechanism in the LSTM (and the GRU) and its relation to solving the vanishing
gradient problem in recurrent neural networks, see Sections 4.2 and 4.3 in the detailed course
notes of Cho [2015].

LSTMs are currently the most successful type of RNN architecture, and they are respon-
sible for many state-of-the-art sequence modeling results. e main competitor of the LSTM-
RNN is the GRU, to be discussed next.

Practical Considerations When training LSTM networks, Jozefowicz et al. [2015] strongly
recommend to always initialize the bias term of the forget gate to be close to one.

15.3.2 GRU
e LSTM architecture is very effective, but also quite complicated. e complexity of the system
makes it hard to analyze, and also computationally expensive to work with. e gated recurrent
unit (GRU) was recently introduced by Cho et al. [2014b] as an alternative to the LSTM. It was
subsequently shown by Chung et al. [2014] to perform comparably to the LSTM on several (non
textual) datasets.

Like the LSTM, the GRU is also based on a gating mechanism, but with substantially
fewer gates and without a separate memory component.

sj D RGRU.sj �1; xj / D.1 � z/ˇ sj �1 C zˇ Qsj

z D�.xj W xz C sj �1W sz/

r D�.xj W xr C sj �1W sr/

Qsj D tanh.xj W xs C .r ˇ sj �1/W sg/

yj D OGRU.sj / Dsj

(15.5)

sj ; Qsj 2 Rds ; xi 2 Rdx ; z; r 2 Rds ; W xı 2 Rdx�ds ; W sı 2 Rds�ds :

182 15. CONCRETE RECURRENT NEURAL NETWORK ARCHITECTURES

One gate (r) is used to control access to the previous state sj �1 and compute a proposed up-
date Qsj . e updated state sj (which also serves as the output yj) is then determined based on
an interpolation of the previous state sj �1 and the proposal Qsj , where the proportions of the
interpolation are controlled using the gate z.⁷

e GRU was shown to be effective in language modeling and machine translation. How-
ever, the jury is still out between theGRU, the LSTMand possible alternative RNN architectures,
and the subject is actively researched. For an empirical exploration of the GRU and the LSTM
architectures, see Jozefowicz et al. [2015].

15.4 OTHER VARIANTS
Improvements to non-gated architectures e gated architectures of the LSTM and the GRU
help in alleviating the vanishing gradients problem of the Simple RNN, and allow these RNNs to
capture dependencies that span long time ranges. Some researchers explore simpler architectures
than the LSTM and the GRU for achieving similar benefits.

Mikolov et al. [2014] observed that the matrix multiplication si�1W s coupled with the
nonlinearity g in the update rule R of the Simple RNN causes the state vector si to undergo large
changes at each time step, prohibiting it from remembering information over long time periods.
ey propose to split the state vector si into a slow changing component ci (“context units”) and
a fast changing component hi .⁸ e slow changing component ci is updated according to a linear
interpolation of the input and the previous component: ci D .1 � ˛/xi W x1 C ˛ci�1, where ˛ 2

.0; 1/. is update allows ci to accumulate the previous inputs. e fast changing component hi

is updated similarly to the Simple RNN update rule, but changed to take ci into account as
well:⁹ hi D �.xi W x2 C hi�1W h C ci W c/. Finally, the output yi is the concatenation of the
slow and the fast changing parts of the state: yi D Œci Ihi �. Mikolov et al. demonstrate that this
architecture provides competitive perplexities to the much more complex LSTM on language
modeling tasks.

e approach of Mikolov et al. can be interpreted as constraining the block of the matrix
W s in the S-RNN corresponding to ci to be a multiple of the identity matrix (see Mikolov et al.
[2014] for the details). Le et al. [2015] propose an even simpler approach: set the activation
function of the S-RNN to a ReLU, and initialize the biases b as zeroes and the matrix W s as the
identify matrix. is causes an untrained RNN to copy the previous state to the current state, add
the effect of the current input xi and set the negative values to zero. After setting this initial bias
toward state copying, the training procedure allows W s to change freely. Le et al. demonstrate
that this simple modification makes the S-RNN comparable to an LSTM with the same number
of parameters on several tasks, including language modeling.

⁷e states s are often called h in the GRU literature.
⁸We depart from the notation in Mikolov et al. [2014] and reuse the symbols used in the LSTM description.
⁹e update rule diverges from the S-RNN update rule also by fixing the nonlinearity to be a sigmoid function, and by not
using a bias term. However, these changes are not discussed as central to the proposal.

15.5. DROPOUT IN RNNS 183

Beyond differential gates e gating mechanism is an example of adapting concepts from the
theory of computation (memory access, logical gates) into differentiable—and hence gradient-
trainable—systems. ere is considerable research interest in creating neural network architec-
tures to simulate and implement further computational mechanisms, allowing better and more
fine grained control. One such example is the work on a differentiable stack [Grefenstette et al.,
2015] in which a stack structure with push and pop operations is controlled using an end-to-end
differentiable network, and the neural turing machine [Graves et al., 2014] which allows read and
write access to content-addressable memory, again, in a differentiable system. While these efforts
are yet to result in robust and general-purpose architectures that can be used in non-toy language
processing applications, they are well worth keeping an eye on.

15.5 DROPOUT IN RNNS
Applying dropout to RNNs can be a bit tricky, as dropping different dimensions at different time
steps harms the ability of the RNN to carry informative signals across time. is prompted Pham
et al. [2013], Zaremba et al. [2014] to suggest applying dropout only on the non-recurrent con-
nection, i.e., only to apply it between layers in deep-RNNs and not between sequence positions.

More recently, following a variational analysis of the RNN architecture, Gal [2015] sug-
gests applying dropout to all the components of the RNN (both recurrent and non-recurrent),
but crucially retain the same dropout mask across time steps. at is, the dropout masks are sam-
pled once per sequence, and not once per time step. Figure 15.2 contrasts this form of dropout
(“variational RNN”) with the architecture proposed by Pham et al. [2013], Zaremba et al. [2014].

e variational RNN dropout method of Gal is the current best-practice for applying
dropout in RNNs.

184 15. CONCRETE RECURRENT NEURAL NETWORK ARCHITECTURES

yt–1 yt+1yt yt–1 yt+1yt

xt–1 xt+1xt xt–1 xt+1xt

(a) Naive dropout RNN (b) Variational RNN

Figure 15.2: Gal’s proposal for RNN dropout (b), vs. the previous suggestion by Pham et al. [2013],
Zaremba et al. [2014] (a). Figure from Gal [2015], used with permission. Each square represents
an RNN unit, with horizontal arrows representing time dependence (recurrent connections). Vertical
arrows represent the input and output to each RNN unit. Colored connections represent dropped-out
inputs, with different colors corresponding to different dropout masks. Dashed lines correspond to
standard connections with no dropout. Previous techniques (naive dropout, left) use different masks
at different time steps, with no dropout on the recurrent layers. Gal’s proposed technique (Variational
RNN, right) uses the same dropout mask at each time step, including the recurrent layers.

	Specialized Architectures
	Concrete Recurrent Neural Network Architectures
	CBOW as an RNN
	Simple RNN
	Gated Architectures
	LSTM
	GRU

	Other Variants
	Dropout in RNNs

