77

CHAPTER 6 |

Morphological Analysis and

Generation

The previous chapter included several examples in which rewrite rules were used to generate
variants—including plurals and locative case forms—of various words. Building on these tech-
niques, this chapter provides a systematic finite-state treatment of morphology, the study of
word formation and word-internal structure.

Much of the early work in speech and language processing treated words—however
defined—as indivisible units of linguistic meaning, and as such ignored the relationship between
English words like /ock, locked, locksmiths, padlock, and unlockable. Modeling these relations soon
became necessary, however. Early work in information retrieval (effectively, early versions of
search engines) found it helpful to reduce sparsity by conflating related English words using
stemmers, cascades of handwritten, language-specific suffix-stripping rules (e.g., Porter 1980).
The “stems” produced need not even be real words—for instance, applying the Porter stemmer
to some of the previous text yields non-words like cascad, languag, and produc—so long as words
sharing the same stem fall into semantically coherent equivalence classes. Intuitively, someone
who searches the internet or a database for fishing may also be interested in documents that only
mention fzsh. Replacing words with their “stems” allows retrieval systems to improve generaliza-
tion and reduce the computing and memory requirements of indexing and retrieval. At roughly
the same time, early word processing and typesetting systems were forced to model morphology
to compress large lists of words—for spell-checking (Mcllroy 1982) and hyphenation (Liang
1983), for example—to fit within limited random access memory of the era’s microcomput-
ers.! One of the more systematic early computational treatments of English morphology was
undertaken by the developers of MITalk, a text-to-speech synthesis engine. This system is de-
scribed by Allen et al. (1987) and Klatt (1987), although work began almost two decades earlier.?
MITalk includes a module called DECOMP which decomposes complex words into their con-
stituent parts for the purposes of predicting their pronunciations. DECOMP consists of a list
of stems and affixes (e.g., prefixes and suffixes), and rules governing the spelling of complex
words. For example, consider the word scarcity, which is composed of scarce plus -izy, a suf-

1 As an apocryphal story has it, Bill Gates told the audience of a 1980s trade show that 640 kilobytes of memory “ought to
be enough for anybody”. For comparison, the roughly 235,000 headwords of the second edition of Webster’s New International
Dictionary (Neilson and Knott 1934) constitute 2.2 MB of ASCII text.

2 DECTalk, a commercial variant of MITalk put out by the Digital Equipment Corporation, is best known as the adopted
voice of late physicist and author Stephen Hawking.

78 6. MORPHOLOGICAL ANALYSIS AND GENERATION

fix forming abstract nouns from adjectives. DECOMP generates this word—and thus recovers
its decomposition—by concatenating scarce and -izy and applying a spelling rule that deletes a
word-final e before certain suffixes; such rules are available only at the right edge of a stem. At
the same time, DECOMP considers, but rejects, an alternative analysis scar-city (which, for in-
stance, might refer to an urban area where scars are a common sight). This decomposition would
yield an incorrect pronunciation, and various hand-tuned heuristics are used to avoid such incor-
rect decompositions. The system is able to generate over 100,000 words from its 12,000 lexical
entries (Klatt 1987:773).

To the modern reader, the data and memory limitations motivating early work on mor-
phological analysis may seem as distant as the 1980s themselves, but such problems still resonate
today. Modern laptops may have several orders of magnitude more memory than the micro-
computers used to run MITalk, but text processing systems are also expected to run on mobile
devices, including affordable cellular phones, with limited computational resources.

6.1 APPLICATIONS

Many systems that process or generate speech or text may need to be sensitive
to morphology. For example, the following chapter (section 7.6) illustrates the gen-
eration of weather reports. For English, such a system might use a template like
It's $TEMP degrees and $CONDITIONS in $LOCATION. While this would correctly generate ex-
pressions like It's twelve degrees and cloudy in Montreal, it also would produce the un-
grammatical *one degrees on certain cold days. Internationalization of text generation or pro-
cessing systems originally built for English—or Mandarin—may require a great deal of mor-
phological sophistication, simply because these languages have an uncommonly impoverished
morphology. Whereas in English, a noun inflects for number (e.g., one city, rwo cities), Russian
nouns are also inflected for case, which indicates the noun’s grammatical function in the clause.
As Russian has six cases and two numbers, a noun’s paradigm—its list of inflected forms—may
have as many as twelve variants. In practice, although, many forms may appear in multiple slots
or cells in the paradigm, a phenomenon known as syncretism. The paradigm of a Russian noun
is shown in Table 6.1 below; note the syncretism between nominative and accusative forms is
characteristic of inanimate nouns.® Russian poses a somewhat greater challenge for the weather
generation example above, for one says odin gradus ‘one degree’, tri gradusa ‘three degrees’, and
vdsem’ gradusov ‘eight degrees’, using the nominative singular, genitive singular, and genitive
plural forms, respectively.

'The above example is an instance of morphological generation, and models which per-
form it are known as generators or inflectors. In this scenario, one wishes to produce a certain
form of a stem, for example, the instrumental plural form of the Russian word Zurndl ‘mag-
azine, journal’, having already determined the appropriate form to use in this context. De-

3 Russian examples have been transliterated from their Cyrillic spellings. Primary stress, marked here with an acute
accent, is not part of the standard Cyrillic orthography of Russian, but is indicated here.

6.1. APPLICATIONS 79

Table 6.1: Paradigm for the Russian masculine noun grddus ‘degree’.

Nominative | gradus gradusy
Genitive gradusa | grddusov
Dative gradusy | grddusam
Accusative | gradus gradusy

Instrumental | graidusom | gradusami

Prepositional | graduse gradusax

termining the proper morphological form to use in a given context is beyond the scope of
this chapter. 'The inverse procedure, morphological analysis, recovers the citation form or
lemma—roughly, the form one would expect to find this word listed under in a dictionary—
and the morphosyntactic features of an inflected form. For instance, Zurndlami is analyzed as
the instrumental plural of Zurndl ‘magazine, journal’, and might be represented by the string
zurnal+ami[num=pl] [case=ins] where the boundary symbol ‘+” separates stems and affixes and
the morphosyntactic features are written in square brackets. In some cases, one is not as so
interested in morphosyntactic features of the inflected word but simply wishes to recover its
lemma, a process referred to as lemmatization. Conversely, some applications of morphosyn-
tactic features do not require a decomposition into stem and affixes, a scenario referred to as
morphological tagging. When applied to documents, morphological analysis may require one
to first segment the text stream into sentences and/or words. Sentence splitting and tokeniza-
tion also lie beyond the scope of this book, and may be non-trivial for certain scripts, particularly
certain scripts of East Asia which do not consistently delimit word boundaries with whitespace
or punctuation.

Lemmas and morphosyntactic features are commonly used to provide features to part-
of-speech tagging (e.g., Denis and Sagot 2009, Haji¢ 2000, Haldcsy et al. 2006) or syntactic
parsing (e.g., Dehouck and Denis 2018, Dubey 2005, Fraser et al. 2013) systems, particularly
in richly inflected languages. Lemmas are also used as a sophisticated alternative to stemming
in information retrieval applications.

Computational morphological analysis and generation, including most of the examples in
this chapter, often makes use of orthographic inputs and outputs rather than phonemic represen-
tations. There are several reasons for this. First, most applications of of morphological analysis
or generation naturally take in or and/or produce orthographic forms, so additional effort is re-
quired to phonemic representations internally. Second, orthographic representations have little
effect in languages like Finnish or Spanish, which have shallow, highly consistent orthographies

that are quite close to phonemic or phonetic transcriptions. In contrast, languages like En-

80 6. MORPHOLOGICAL ANALYSIS AND GENERATION

glish and Korean have what Rogers (2005), inter alia, calls deep orthographies, meaning that
spellings are more abstract. In English spelling, one rarely indicates morphologically conditioned
changes in vowel quality, and as a result, related words like saze and sanity are spelled quite simi-
larity despite the fact that they have different stem vowels (Chomsky and Halle 1968:44f.). One
is therefore free to ignore stress shift and vowel reduction processes in English when building

an orthographically based morphological analyzer.

6.2 WORD FORMATION

There are many different theoretical frameworks used by linguists studying morphology. One
major distinction, is between the family of item-and-arrangement theories, which analyze a
word like Zurndlami as the concatenation of two meaningful morphemes—e.g., the stem Zurnd/
and the instrumental plural suffix -ami—and item-and-process theories which views affixation
as just one type of transformation applied to a base (Hockett 1954). However, Karttunen (2003)
and Roark and Sproat (2007: ch. 3) argue that this distinction—as well as the additional distinc-
tion between lexical and realizational theories popularized by Stump (2001)—are essentially
computationally equivalent because all the relevant processes under either family of theories are
largely equivalent to the rational relations and can be modeled by cascades of finite-state trans-
ducers. Furthermore, FSTs designed for generation can be modified for analysis, lemmatization,
or tagging depending on one’s needs.

Koskenniemi’s broad-coverage morphology of Finnish, reviewed in detail by Roark and
Sproat (2007: ch. 4), was one of the first attempts to use finite-state automata for morphological
analysis and generation. The model Koskenniemi proposed became something of a standard for
fieldwork and language documentation of morphologically rich languages (Antworth 1990).
The subsequent discovery of algorithms for compiling rewrite rules (chapter 5) in the 19807,
greatly simplifies the process of constructing an analyzer, inflector, lemmatizer, or tagger. Using
the tools already discussed, there are numerous ways one might build a finite-state analyzer.
Indeed, this “many ways to do it” freedom is one of the more pleasant features of finite-state
computing. Perhaps the simplest approach for dealing with Russian nouns, for example, would
be to simply construct a transducer from wordforms to their associated features; it would be
straightforward to convert this analyzer to a inflector, lemmatizer, or tagger. This is illustrated
in the snippet below. If this resulting transducer is called v, then given u, an FST mapping from
features to human-readable strings, one could extract the analyses of a string s from the lattice
To(s 0 v o).

nouns = pynini.string_map(

[

("Zurndl", "Zurnal+[num=sg][case=nom]"),
("zurnala", "Zurnal+a[num=sg][case=gen]"),
("Zurnalu", "Zurnal+u[num=sg][case=dat]"),
(

"Zurndl", "Zurnal+[num=sg][case=acc]"),

6.3. FEATURES 81
("Zurnalom", "Zurnal+om[num=sg][case=ins]"),
("Zurnale", "Zurnal+e[num=sg][case=prpl"),
("Zurnala", "Zurnal+y[num=pl][case=nom]"),
("Zurnalov", "Zurnal+ov[num=pl][case=gen]"),
("Zurnalam", "Zurnal+am[num=pl][case=dat]"),
("Zurnala", "Zurnal+y[num=pl][case=acc]l"),
(
(

urnalax", "Zurnal+ax[num=pl][case=prp]"),

z
zurnalami", "zurnal+ami[num=pl][case=ins]"),

Of course, to cover a sizeable chunk of Russian noun morphology would require adding
whatever nouns one wanted to cover. The disadvantages of this approach should be clear: the
list of forms would be need to be extremely large to obtain broad coverage. While this approach
is workable, it is not ideal. One would prefer a method that allows one to

1. share information across multiple stems in the same paradigm,
2. inherit information from related paradigms,
3. conveniently represent morphosyntactic features and feature bundles, and

4. construct analyzers, generators, lemmatizers, and taggers.

The remainder of this chapter introduces the features and paradigms modules, part of Pynini’s
extended library (Appendix C), which provide precisely this functionality.

6.3 FEATURES

While the term has a much broader sense in morphological theory, here a feature refers to
morpho-syntactic property that defines the slots within a given paradigm. For instance, Russian
noun paradigms are defined by case and number. Classes in the features module can be used
to define features and slots. The first argument to the Feature constructor is the name of the
teature, and the remaining arguments define the names of valid values for that feature. Case and
number features are defined in the following snippet.

case = features.Feature(

n n n

nom",

n na n n

gen", "dat", "acc", "ins",

"case", prp

)

num = features.Feature("num", "sg", "pl")

A Category is a combination of features, expressed as an acceptor which accepts any se-
quence of the feature-value pairs it is constructed from. Thus, the noun Category defined
in the following snippet will admit feature combinations like {[case=nom], [num=sg]}, or
{[case=ins], [num=pl]}.

82 6. MORPHOLOGICAL ANALYSIS AND GENERATION

noun = features.Category(case, num)

Finally, a FeatureVector represents a valid combination of a Category and a sequence of feature
specifications. For instance, the following combinations are valid.

nomsg = features.FeatureVector(noun, "case=nom", "num=sg")
genpl = features.FeatureVector(noun, "case=gen", "num=pl")
inspl = features.FeatureVector(noun, "num=pl", "case=ins")

6.4 PARADIGMS

Having defined the slots in a paradigm, it now is necessary to combine them into a
paradigm. This is accomplished using the paradigms module. One first selects a bound-
ary symbol to separate wordforms into stems and affixes, conventionally ‘+’. The function
make_byte_star_except_boundary is used to construct a definition of a stem, here (X — {+})*
where X is the set of bytes.

'The paradigms module follows Roark and Sproat (2007: ch. 2)—and the spirit of the item-
and-process model— in that affixes are introduced via composition rather than concatenation.
Thus, a suffix s permitted to attach to any stem corresponds to the rational relation { = S(@ x
{s}), where S is the set of stems. Then, then 7,[x o {] where x € S, corresponds to the string
xs, and a similar logic applies for prefixes. This may seem like a roundabout way of defining
affixation, but it—unlike concatenation—is general enough to allow for additional restrictions
on stem shape, to permit the affix to trigger a change to the stem, or even to permit the affix to
insert itself into the stem, all of which are seen in the following examples.

6.5 EXAMPLES

'The remainder of this chapter sketches morphological analyzers for four languages. We focus
here on cases that involve relatively complex paradigmatic relationships, or non-concatenative
systems where the affixation is sensitive to the phonological shape of the base. Of course purely
concatenative and potentially unbounded morphology of the kind as discussed by Hankamer
(1989) for Turkish (see section 5.1) is also important, but then again it is more obvious how one
might implement such cases. We leave it as an exercise for the reader to implement a model that
can handle examples like marginalizationalizationalizdtion discussed in section 5.1.

6.5.1 RUSSIAN NOUNS

In the paradigms module, a paradigm is primarily defined by slots, and each slot is defined
by a pair consisting of an affixation transducer and a FeatureVector. For Russian nouns, since
the relevant affixes are suffixes that impose minimal constraints on their stems, these affixation
transducers are defined using the module’s suffix function, which constructs a simple suffixation
relation ¢ given stem shape and suffix acceptors; a prefix function is also provided.

6.5. EXAMPLES 83

A pParadigm is constructed from
1. the Category,
2. alist of slots, and
3. a FeatureVector defining the lemma,
4. alist of stems (strings or acceptors),

as well as several optional fields illustrated below. The Paradigm can then lazily construct ana-
lyzer, tagger, lemmatizer, and inflector transducers. The following snippets implement the so-
called “hard stem masculine accent A”, which includes Russian nouns like grddus and Zurndl,
using the nominal features and noun category defined above. Note that the lemma is assumed
to be the nominative singular form. This is shown in the following snippets.

* Defines the stem shape:
stem = paradigms.make_byte_star_except_boundary()
* Defines the slots:

slots = [
(stem, nomsg),
(paradigms.suffix("+a", stem),

features.FeatureVector(noun, "case=gen", "num=sg")),
(paradigms.suffix("+u", stem),
features.FeatureVector(noun, "case=dat", "num=sg")),
(stem,

features.FeatureVector(noun, "case=acc", "num=sg")),
(paradigms.suffix("+om", stem),
features.FeatureVector(noun, "case=ins", "num=sg")),
(paradigms.suffix("+e", stem),
features.FeatureVector(noun, "case=prp", "num=sg")),

(paradigms.suffix("+y", stem),
features.FeatureVector(noun, "case=nom", "num=pl")),
(paradigms.suffix("+ov", stem),
features.FeatureVector(noun, "case=gen", "num=pl")),
(paradigms.suffix("+am", stem),
features.FeatureVector(noun, "case=dat", "num=pl")),
(paradigms.suffix("+y", stem),
features.FeatureVector(noun, "case=acc", "num=pl")),
(paradigms.suffix("+ami", stem),
features.FeatureVector(noun, "case=ins", "num=pl")),

84 6. MORPHOLOGICAL ANALYSIS AND GENERATION

(paradigms.suffix("+ax", stem),
features.FeatureVector(noun, "case=prp", "num=pl")),

]
* Constructs the paradigm:

masc_accent_a = paradigms.Paradigm(
category=noun,
name="hard stem masculine accent A",
slots=slots,
lemma_feature_vector=nomsg,
stems=["gradus", "Zurnal"]

)

'The “hard stem masculine accent B” paradigm can be similarly defined. The only difference
between this and the accent A paradigm is that word stress shifts to the suffix in all cases except
the nominative and accusative singular, a process which be traced back thousands of years to the
accentual system of Proto-Indo-European (Halle 1997). Thus, for instance, the dative singular
of gorb ‘hump, hunch’ is goru and the nominative plural of szd/ ‘table’ is szoly. To generate this
pattern, one needs only to place an acute accent on the appropriate vowel in the suffix, and
then to provide a rule deaccenting the stem. Note also that X* for this rule must include the
output features, obtained from the output projection of the noun Category’s feature mapper
automaton. The optional parent_paradigm argument to Paradigm allows this to inherit any slots
not redefined from another paradigm, here, nominative and accusative singular forms from the
accent A paradigm. Finally, the optional rules argument specifies an optional list of rules—
here, just the deaccentuation rule—to be applied when constructing wordforms. The following
snippets demonstrate the construction of the accent B paradigm. Note that the noun object
provides X* for the rewrite rule.

* Defines the deaccentuation rule:

deaccentuation_map = pynini.string_map(
[
noongny,

(”a r ”i”)l
(”é"l "0")1

”y”) ’

)
acc_v = pynini.project(deaccentuation_map, "input")
deaccentuation = pynini.cdrewrite(

nn

deaccentuation_map, , noun.sigma_star + acc_v, noun.sigma_star

) .optimize()

* Defines the slots:

6.5. EXAMPLES 85

slots = [

(paradigms.suffix("+a", stem), nomsg),
(paradigms.suffix("+u", stem),

features.FeatureVector(noun, "case=dat", "num=sg")),
(paradigms.suffix("+6m", stem),
features.FeatureVector(noun, "case=ins", "num=sg")),
(paradigms.suffix("+é", stem),
features.FeatureVector(noun, "case=prp", "num=sg")),
(paradigms.suffix("+y", stem),
features.FeatureVector(noun, "case=nom", "num=pl")),
(paradigms.suffix("+o6v", stem),
features.FeatureVector(noun, "case=gen", "num=pl")),
(paradigms.suffix("+am", stem),
features.FeatureVector(noun, "case=dat", "num=pl")),
(paradigms.suffix("+y", stem),
features.FeatureVector(noun, "case=acc", "num=pl")),
(paradigms.suffix("+ami", stem),
features.FeatureVector(noun, "case=ins", "num=pl")),
(paradigms.suffix("+ax", stem),
features.FeatureVector(noun, "case=prp", "num=pl")),

1

Defines the paradigm:

masc_accent_b = paradigms.Paradigm(

)

category=noun,

name="hard stem masculine accent B",
slots=slots,
parent_paradigm=masc_accent_a,
lemma_feature_vector=lemma_features,
stems=["gdérb", "sto6l"],
rules=[deaccentuation]

To demonstrate the use of the two paradigms, consider the following function, which
prints all the forms of a given stem using the stem_to_forms transducer to generate the wordform
itself, and the feature_label_rewriter transducer to produce a human-readable representation
of the feature vector.

def print_forms(noun: str, pd: paradigms.Paradigm) -> None:
lattice

= rewrite.rewrite_lattice(

86 6. MORPHOLOGICAL ANALYSIS AND GENERATION

noun,
pd.stems_to_forms @ pd.feature_label_rewriter

)

for wordform in rewrite.lattice_to_strings(lattice):
print(wordform)

'The following interactive session shows the outputs for grddus and stdl.

>>> print_forms("gradus", masc_accent_a)
gradus+ami[case=ins] [num=pl]
gradus+am[case=dat] [num=pl]
gradus+ax[case=prp] [num=pl]
gradus+a[case=gen] [num=sg]
gradus+e[case=prp] [num=sg]
gradus+om[case=ins] [num=sg]
gradus+ov[case=gen] [num=pl]
gradus+u[case=dat] [num=sg]
gradus+y[case=nom] [num=pl]
gradus+y[case=acc] [num=pl]
gradus [case=nom] [num=sg]
gradus[case=acc] [num=sg]

>>> print_forms("stél", masc_accent_b)
stol+y[case=acc] [num=pl]
stol+y[case=nom] [num=pl]
stol+u[case=dat] [num=sg]
stol+o6v[case=gen] [num=pl]
stol+ém[case=ins] [num=sg]
stol+é[case=prp] [num=sg]
stol+a[case=gen] [num=sg]
stol+ax[case=prp] [num=pl]
stol+am[case=dat] [num=pl]
stol+ami[case=ins] [num=pl]
stol[case=acc] [num=sg]
stoél[case=nom] [num=sg]

6.5.2 TAGALOG INFIXATION

Consider an example where affixation is not merely concatenative. Like many other Austrone-
sian languages, Tagalog, spoken in the Philippines, makes use of infixes, affixes which attach
to the middle of stems. To form the actor-focus infinitive form, one inserts -um- between a
word-initial consonant C and the following vowel V, or initially—i.e., as a prefix—if there is

6.5. EXAMPLES 87
Table 6.2: Tagalog um-infixation, after Ramos and Bautista (1986).

Lemma ‘ Actor Focus (-um-) ‘

bilang | bumilang ‘count’
ibig umibig ‘love’
kopya | kumopya ‘copy’
lipad lumipad ‘fly’
punta | pumunta ‘go to’

no word-initial consonant. Some examples are given in Table 6.2, and the following snippets
implement Tagalog um-infixation.

* Constructs the focus feature, the verb category, and the lemma feature vector:*

focus = features.Feature("focus", "none", "actor")
features.Category(focus)
features.FeatureVector(verb, "focus=none")

verb

none

* Defines V, C and the stem shape:

nan nan n

v = pynini.union("a", "e", "i", "o", "u")
Cc = pynini.union(
l|bl|’ lldll, |lf|l' |lg|l’ |lhll’ IIkH’ l|1l|’ l|1yl|’ Ilk!l, |lm|l' |ln|l’

n n n

ng", "ny", "p", "r", "s", "t", "ts", "w", "y", "z"
)

stem = paradigms.make_byte_star_except_boundary()
* Defines um-infixation as stem-form rule:

um = pynini.union(
c.plus + pynutil.insert("+um+") + v + stem,
pynutil.insert("um+") + v + stem

)

e Defines the slots:

slots = [
(stem, none),
(um, features.FeatureVector(verb, "focus=actor")),

]

4 While omitted here, there are several other types of focus in Tagalog.

88 6. MORPHOLOGICAL ANALYSIS AND GENERATION
* Constructs the paradigm:

tagalog = paradigms.Paradigm(

category=verb,

slots=slots,

lemma_feature_vector=none,

stems=["bilang", "ibig", "lipad", "kopya", "punta"l,
)

'The following interactive session shows the outputs for bilang and ibig.

>>> print_forms("bilang"”, tagalog)
bilang[focus=none]
b+um+ilang[focus=actor]

>>> print_forms("ibig", tagalog)
ibig[focus=none]
um+ibig[focus=actor]

6.5.3 YOWLUMNE ASPECT

An even more complex example comes from Yowlumne (formerly Yawelmani), an endangered
language spoken in California. This particular example comes to us from Newman (1944)
via Archangeli (1984).° In this language, verbal aspect is expressed via suffixation with con-
comitant reshaping of the verb stem. These shapes can be described in terms of templates of
vowels and consonants, and thus Yowlumne provides a novel example of templatic morphology
not dissimilar to better-known examples like Arabic and Hebrew.

Four aspectual suffixes can attach to the verb root: dubitative -4/, passive aorist -#, gerun-
dial -inay, and durative ~aa.® The first two suffixes are said to be “neutral” because, unlike the
latter two, they do not trigger any stem changes. However, the gerundial, for example, is as-
sociated with a template represented by the regular language C VCC” where C is the set of
consonants and V' the set of vowels. This does not trigger any changes to caw ‘shout’, because
it is a subset of CVCC?, but with the stem hoyoo ‘name’, the gerundial stem is realized as Aoy,
with truncation of the final long vowel. Similarly, the durative is associated with a CVCVVC?
template, where the doubled V' indicates a long vowel. Thus, the stems caw and i/k ‘sing’ have
durative stems cawaa- and ?i/iik-, respectively. Additional examples are provided in Table 6.3.

Archangeli (1984) describes the conventions necessary to map stems onto templates, but
what matters here is that these mappings are also regular relations. The transducers implement-
ing these templates may either insert or delete material, and the paradigm slots are defined

5 Blevins (2004) and Weigel (2005) note that much of the Yowlumne data used by Archangeli others consist of hypo-
thetical words posited by earlier authors—particularly Kuroda (1967)—on the basis of rules and stems provided by Newman
(1944). Therefore, these particular data should be taken with a grain of salt.

6 In these transcriptions ? represents the glottal stop, ¢ a voiceless alveolar affricate. Long vowels are indicated by doubled
vowels.

6.5. EXAMPLES 89

Table 6.3: Yowlumne aspectual suffixes, after Archangeli (1984:252). Note that the -7 suffix
after the durative ending -?aa is a tense suffix: see Newman (1944:97).

caw cawal | cawt | cawinay | cawaa?aa-n | ‘shout’

. < b
cuum | cuumal | cuumt | cuminay | cumuu?aa-n | ‘destroy

hoyoo | hoyooal | hoyoot | hoyinay | hoyoo?aa-n | ‘name’

diiyl diiylal | diiylt |diylinay | diyiil?aa-n | ‘guard’
?ilk ?ilkal ?ilkt ?ilkinay | ?iliik?aa-n | ‘sing’

hiwiit hiwiital | hiwiitt | hiwtinay | hiwiit?aa-n | ‘walk’

by inserting the appropriate suffixes and composing the stem with the appropriate affix. The
CVCVVC? template requires one to copy certain vowels to indicate lengthening. Generally
speaking, string relations that copy arbitrary unbounded sequences are not rational relations,
but one can simulate this effect using an iterated union over the eligible segments. The follow-
ing snippets implement the Yowlumne aspectual system as a paradigm.

* Constructs the aspect feature, the verb category, and the lemma feature vector:

aspect = features.Feature(
"aspect", "root", "dubitative", "gerundial", "durative"
)
verb = features.Category(aspect)
root features.FeatureVector(verb, "aspect=root"))

* Defines C, V, and the step shape:

Cc = pynini.union(

”C”I ”m"I ”h”l ”1"I "y"l "k”I ”?”I ”d”I ”n"I ”W”l "t"
)
v = pynini.union("a", "i", "o", "u")

stem = paradigms.make_byte_star_except_boundary()
* Defines the CVCC? template for -inay:

cvece = (
c + v + pynutil.delete(v).ques +
c + pynutil.delete(v).star + c.ques

) .optimize()

90 6. MORPHOLOGICAL ANALYSIS AND GENERATION
* Defines the CVCVVC? template for -?aa:

cvcvve = pynini.Fst()
for vowel in ["a", "i", "o", "u"]:
cvcvvce.union(
c + vowel + pynutil.delete(vowel).ques +
c + pynutil.delete(vowel).star +
pynutil.insert(vowel + vowel) + c.ques
)

cvecvvc.optimize()
* Defines the slots:

slots = [
(stem, root),
(paradigms.suffix("+al", stem),
features.FeatureVector(verb, "aspect=dubitative")),
(paradigms.suffix("+inay", stem @ cvcc),
features.FeatureVector(verb, "aspect=gerundial")),
(paradigms.suffix("+?aa", stem @ cvcvvc),
features.FeatureVector(verb, "aspect=durative")),

1

* Constructs the paradigm:

yowlumne = paradigms.Paradigm(
category=verb,
slots=slots,
lemma_feature_vector=root,
stems=["caw", "cuum", "hoyoo", "diiyl", "?ilk", "hiwiit"]

)
'The following interactive session shows the outputs for caw and i/k.

>>> print_forms("caw", yowlumne)
caw[aspect=root]
cawaa+?aalaspect=durative]
cawtinay[aspect=gerundial]
caw+al[aspect=dubitative]

>>> print_forms("?ilk", yowlumne)
?ilk[aspect=root]
?iliik+?aa[aspect=durative]

6.5. EXAMPLES 91

Table 6.4: Examples of Latin lemmas and stems for three conjugations.

‘ Lemma ‘ 1st Stem ‘ 2nd Stem ‘ 3rd Stem ‘

1st conj. |laudo | laud- laudav- | laudat- | ‘praise’
2nd conj. | monedé | mon- monu- monit- | ‘warn’
3rd conj. | ago ag- eg- act- ‘drive’

?ilk+inay[aspect=gerundial]
?ilk+al[aspect=dubitative]

6.5.4 LATIN VERBS

Finally, the Pynini distribution includes a fairly extensive treatment of over 2,500 Latin verbs
from three conjugations. Salient properties of Latin verbs include agreement with the subject’s
person (first, second, or third) and number (singular or plural), active and passive voices for
most verbs, and three separate stems. Roughly speaking, the first stem is used for present, future
and imperfect forms, and the present participle, the second stem for perfect aspectual forms, and
the third stem for participial forms and various productive nominalizations. Examples of these
stems are given in Table 6.4. In all cases it is assumed that the citation form, the first person
singular active indicative present, is the lemma.

'The relation between the stems of the first conjugation is largely regular in that most verbs
of this conjugation exhibit a pattern similar to that of /aud, the second and particularly third con-
jugations are much more irregular. Some of the most complex patterns include reduplication
(e.g., the second stem of spondes ‘promise’ is spopond-) and suppletion, the use of phonologi-
cally dissimilar stems within a single paradigm (e.g., the second and third stems of fero ‘bring’
are tul- and /ar-, respectively). However, it is notable that no matter the shape of a given stem,
that stem is used in the same contexts across all verbs; for example, there are no exceptions to
the generalization that passive participles and nominalizations in -ig are built from the third
stem. While there are some subregularities, the third stem of a verb is not fully predictable from
the verb’s other stems, and there do not seem to be any particular syntactic or semantic com-
monalities between the various uses of the three stems. Aronoft (1994) refers to morphological
generalizations that are phonologically, syntactically, and semantically arbitrary—like the Latin
third stem—as morphomic.

FURTHER READING

Aronoff and Fudemann (2011) provide an accessible introduction to the theory of morphology.
Sproat (1992) describes the early history of computational morphology.

92 6. MORPHOLOGICAL ANALYSIS AND GENERATION

Many of the computational issues and examples discussed in this chapter are addressed
in greater detail by Roark and Sproat (2007); their Chapter 2 reviews many examples of mor-
phological processes, including fragments of Latin, Tagalog, and Yowlumne, Chapter 3 argues
that item-and-arrangement and item-and-process theories are computationally equivalent, and
Chapter 5 reviews machine learning approaches to morphology up to that date.

Kurimo et al. (2010) reviews the Morpho Challenge shared tasks on unsupervised mor-
phological learning, held 2005-2010. More recently, the Conference on Natural Language
Learning (CoNLL) and the ACL Special Interest Group on Computational Morphology and
Phonology (SIGMORPHON) have hosted a series of shared tasks on supervised morphologi-
cal analysis and generation (Cotterell et al. 2016, 2017, 2018, McCarthy et al. 2019, Vylomova
et al. 2020). Beemer et al. (2020) use the results of the 2020 SIGMORPHON shared task to

compare “hand-written” morphological analyzers to ones based on neural networks.

	Morphological Analysis and Generation
	Applications
	Word Formation
	Features
	Paradigms
	Examples
	Russian Nouns
	Tagalog Infixation
	Yowlumne Aspect
	Latin Verbs

