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Abstract
Speech recognizers are typically trained with data from a stan-
dard dialect and do not generalize to non-standard dialects. Mis-
match mainly occurs in the acoustic realization of words, which
is represented by acoustic models and pronunciation lexicon.
Standard techniques for addressing this mismatch are generative
in nature and include acoustic model adaptation and expansion
of lexicon with pronunciation variants, both of which have lim-
ited effectiveness. We present a discriminative pronunciation
model whose parameters are learned jointly with parameters
from the language models. We tease apart the gains from mod-
eling the transitions of canonical phones, the transduction from
surface to canonical phones, and the language model. We report
experiments on African American Vernacular English (AAVE)
using NPR’s StoryCorps corpus. Our models improve the per-
formance over the baseline by about 2.1% on AAVE, of which
0.6% can be attributed to the pronunciation model. The model
learns the most relevant phonetic transformations for AAVE
speech.
Index Terms: large vocabulary speech recognition, dialec-
tal speech recognition, pronunciation modeling, discriminative
training

1. Introduction
Speech recognition technology is increasingly ubiquitous in ev-
eryday life. Automatic speech recognition (ASR) is used to in-
teract with customer service systems and personal electronic
devices. Medical professionals use ASR for dictation, and
clinicians and educators employ it for automated assessment
[1, 2, 3]. Differences between individual speakers pose one
of the main challenges in speech recognition. Speech varies
with age, gender, ethnicity, geography (in the form of regional
dialects), and socioeconomic status [4, 5]. In addition to this
between-speaker variation, speech “style” also impacts recog-
nition quality. Features of casual speech—greater speech rate
and higher rates of fillers (uh and um), repetitions, false starts,
and vocal noise—make recognition more difficult than for for-
mal styles like those used in news broadcasts. However, de-
veloping new ASR systems, for example, for specific dialects
requires a significant investment in preparing the necessary cor-
pus of manually transcribed speech data (with an accompanying
pronunciation lexicon).

In traditional ASR systems, pronunciation is represented by
context-dependent (CD) acoustic states at acoustic level, and
by the pronunciation lexicon at phonetic level. The pronunci-
ation lexicon is usually a simple, deterministic mapping from
phones to words using canonical pronunciations. Traditionally,
both the acoustic model (AM) and pronunciation lexicon are
independently adapted when extending an ASR system to new
dialects. Acoustic models are adapted using techniques such

as generative maximum a posteriori (MAP) [6] or maximum
likelihood linear regression (MLLR) techniques [7, 8, 9, 10],
and in some cases new pronunciation variants are added to the
pronunciation lexicon [11, 12, 13, 14, 15, 16]. Another alterna-
tive is to modify the context-dependent decision trees [9, 17].
In addition, when dealing with dialectal speech recognition the
language model could also be adapted, although it is generally
assumed that the degradation due to grammatical mismatches
between two dialects is less than that caused by pronunciation-
related mismatches.

One common approach to learn new pronunciations em-
ploys joint-multigram models which map graphemes onto
phones [18]. They are built as regular word n-gram language
models (LMs), but the tokens are phone/grapheme pairs—
graphone units—instead of words. These models capture in-
formation about phone and grapheme context [19, 20]. Alter-
natively, phonological rules can be represented with the joint
multigram model. In this case the model maps spoken phone
sequences onto canonical phone sequences [21].

Jyothi and colleagues [22] discriminatively estimate param-
eters from the lexicon using a weighted finite state transducer
(WFST) framework. The recognizer is represented as WFST
factors or components, and they learn the parameters of the arcs
from the pronunciation lexicon WFST in isolation, or together
with parameters from the acoustic model and context dependent
decision tree WFSTs.

In this study, we learn a discriminative linear model to im-
prove the pronunciation model of a baseline broadcast news rec-
ognizer for recognizing AAVE dialect. Continuing our thread of
previous work on using discriminative linear models [23], we
learn the relevant phonetic transformations for the dialect from
the data jointly with the parameters from the language model.

1.1. African American Vernacular English

African American Vernacular English (AAVE) is a dialect
of English spoken by most African Americans, particularly
younger, urban, and working-class individuals, and particularly
in casual speech [24]. AAVE is distinct from Standard Ameri-
can English (SAE) in grammar, pronunciation, and vocabulary.
Table 1, based on Rickford (1999), lists a number of “variable
rules” of AAVE. These relate canonical SAE pronunciations to
common realizations in AAVE. These rules apply stochastically
rather than categorically, and probability of application is sen-
sitive to phonological context as well as speaker-specific social
factors such as socioeconomic status [25, 26]. Some of these
variable rules are also found in other English dialects.

1.2. Discriminative pronunciation variation model

The performance of an ASR system often degrades consider-
ably when it is employed to recognize certain dialects that are
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Phonological rule Example Phonological rule Example

th → t thin [+cons]→ ∅ / [+cons] | hand
dh→ d this s p → p s / | grasp
th → f bath s t → t s / | pianist
dh→ v with s k → k s / | ask
oy→ ao boy ax → ∅ / | about
ay → aa right ih → ae / ng drink
v → b / [+nasal] movement eh → ih / [+nasal] {|, [+cons]} pin
l → ax / [+vowel] bell l → ∅ / [+vowel] [+labial] help
z → d / [+nasal] isn’t z → d / [+vowel] [+vowel] reason
r → ax / [+vowel] four v → b / [+vowel] [+vowel] having
r → ∅ / [+vowel] there d → t / [+vowel] | god
ng→ n / ih | walking b → p / [+vowel] | cab
r → ∅ / | th throw t → k / s r destroy
ts → ih z / s | breasts g → k / [+vowel] | log
ts → ∅ / | ghosts

Table 1: Linguistic rules mapping from SAE pronunciations to possible AAVE pronunciations.

not well represented in the training data. We assume that pro-
nunciation variation is the primary cause of this degradation.
The pronunciation lexicon is traditionally a deterministic map-
ping from words into their canonical phonetic representation.
There may be a few pronunciation variants for some words
(e.g., and). The lexicon is not learned or adapted for each task,
so pronunciation variation is largely captured by the AM [27].
However, it is not often feasible to train new AMs for other di-
alects, so baseline AMs, trained on publicly available corpora,
must be adapted for recognition of those other dialects. Fur-
thermore, when dealing with speech from a dialect other than
the standard the pronunciation at the lexical level differs more
from the canonical pronunciations of the lexicon. Hence, the
lexical-level pronunciation must be adapted too.

The adaptation may be performed by adding new pronun-
ciation variants into the lexicon, or by learning a pronunci-
ation variation model that maps surface phones onto canoni-
cal phones. The pronunciation variation model may contain
knowledge-based rules or rules learned from the data. In our
work we use knowledge-based phonological rules, depicted in
Table 1, to generate the features for the discriminative pronun-
ciation variation model. Specifically, we discriminatively learn
the weights for n-grams of phone transformations of the form
ps : pc that match any rule from Table 1, where ps is the surface
phone and pc the canonical phone. We apply the idea of the
global linear models [28] for the estimation of the discrimina-
tive models with the perceptron algorithm, as in [23].

Briefly, the goal of the decoding is to estimate the word se-
quence w for a given input speech utterance x. For that, the
speech utterances x are decoded to get the ASR outputs y. A
function GEN enumerates a set of candidates GEN(x) for the
input x (for example, N-best candidates or lattices). In our case,
each candidate y does not only contain the word sequence, but
also a sequence with phonetic information, where each token is
a phone transformation ps : pc. In the proposed discriminative
pronunciation variation model, the representation Φ maps each
(x, y) to a feature vector Φp(x, y) ∈ <d and a parameter vector
ᾱp ∈ <

d (features and parameters related to the pronunciation
variation model are denoted with the subscript p), and the out-
put of a linear model F(x) is computed as below.

F(x) = arg min
y ∈ GEN(x)

Φp(x, y)ᾱp

2. Experimental results

2.1. Corpus

We use data from the StoryCorps project1 for all experiments, a
subset from the data set used by Chen and colleagues for their
dialect recognition experiments [29]. This data consists of con-
versations between two or more speakers of the same dialect,
either AAVE or SAE. Speaker dialect is self-reported. We learn
independent discriminative models for each dialect. For AAVE,
the training and test set contain 56 speakers and 11 speakers, re-
spectively. The training and test set for SAE include 46 speakers
and 14 speakers, respectively. For both dialects, the training set
consists of approximately 13 hours of speech, and the test set of
approximately 3 hours. Both training and test sets are balanced
in terms of female and male speech quantity.

2.2. Baseline system

The baseline ASR system is a recognizer designed for broad-
cast news modeled with the IBM toolkit in a similar way as
presented in the work by Soltau and colleagues [30]. The
acoustic model consists of 4000 clustered allophone or acoustic
states defined over a pentaphone context and a set of 44 phones,
with states represented by Gaussian mixture models with a to-
tal of 150K mixture components. The observation vectors con-
sist of PLP features, stacked from 10 neighboring frames and
projected into a 50-dimension space using linear discriminant
analysis. The acoustic models were trained using 430 hours
of transcribed broadcast news speech [31, 32]. The language
model was estimated using several corpora of conversational
telephone speech; it has a 48k-word vocabulary and contains
approximately 16M, 16M, and 11M bigrams, trigrams and 4-
grams, respectively. On average, the pronunciation lexicon has
1.1 pronunciations per word. Decoding is performed in sev-
eral stages using successively refined acoustic models, includ-
ing a context-dependent model, a vocal-tract normalized model,
a speaker-adapted maximum likelihood linear regression model,
and a feature and model-based discriminative model [33].

1www.npr.org/series/4516989/storycorps
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2.3. Generation of competing candidates

For training the dialectal linear discriminative models—the
AAVE and SAE models—each utterance x is decoded with the
baseline recognizer, generating lattices Lx containing word se-
quences and associated log probabilities. The 100-best unique
candidates are then extracted from each lattice. For each candi-
date y, apart from the word sequence we also include the canon-
ical phone sequence pc. The canonical phone sequence is ob-
tained by performing a forced-alignment of the speech utterance
with the word sequence candidate using the baseline (out-of-
dialect) ASR.

We generate a second phone sequence for each candidate
using the knowledge-based phonological rules from Table 1.
For each word we include the canonical and new additional pro-
nunciations generated after applying the phonological rules to
the canonical pronunciation. Table 2 shows the generated lexi-
con for a candidate with the word sequence “and then”. In this
example, a new pronunciation is generated for the word and af-
ter applying the rule [+cons]→ ∅. The word then gets assigned
two new pronunciations from the rule dh→ d and dh→ v.

and(01) ae n d
and(02) ae n
then(01) dh eh n
then(02) d eh n
then(03) v eh n

Table 2: Extended lexicon for candidate “and then”.

A forced-alignment of the word sequence candidate is per-
formed with the extended lexicon. The phone sequence asso-
ciated with the lowest acoustic score may be different from the
canonical phone sequence. We call this new phone sequence
the surface phone sequence ps. Then, the Levenshtein align-
ment is computed for the canonical phone pc and surface phone
sequence ps. The alignment produces a sequence whose tokens
are pairs of phones of the form ps : pc, where ps is the sur-
face phone and pc the canonical phone. These pairs are useful
for incorporating weights for specific transformations in the dis-
criminative linear model.

2.4. Parameter estimation

The parameters of the models are iteratively estimated with per-
ceptron algorithm, using the oracle candidates as the reference.
The parameter estimation is iterated until we see no improve-
ment on the held-out data for five iterations. Maximum like-
lihood scores, LML, are interpolated with scores from the dis-
criminative models, LDM , using an interpolation weight α0 de-
termined by 20-fold cross validation.

L = α0 ∗ LML + (1 − α0) ∗ LDM

2.5. Feature Space

For each candidate in the N-best list we have the following se-
quences:

• Word sequence: <s> and then < /s>

• Canonical phone sequence: | ae n d | th eh n|

• Surface phone sequence | ae n | t eh n |

• Joint phone sequence: | ae:ae n:n -:d | t:th eh:eh n:n |

2.6. Results

2.6.1. Discriminative pronunciation variation model

We compare our models on StoryCorps corpus, using both the
AAVE and SAE portions described in Section 2.1 and report
Word Error Rate (WER) on 20-fold cross-validation (Xval) and
held-out test set. As explained earlier, the pronunciation-related
features are unigrams and bigrams of phone transformations;
Φps:pc . The experiments on SAE and AAVE were performed
independently to understand the effectiveness of the model on
standard vs dialectal speech. Statistical significance was com-
puted with respect to the baseline system using the matched-
pairs test [34] provided by NIST SCTK toolkit [35] and non-
significant results at p<0.001 are marked by †.

All experiments were performed using baseline discrimina-
tive acoustic models (BMMI) described in Section 2.2 and the
results are reported in Table 3.

The performance of the baseline ASR models on AAVE is
over 10% worse than on SAE. This is expected since the SAE
is closer to the training data of the baseline acoustic models
(Broadcast News). For reference, we report the oracle accuracy
for the 100-best candidates which specifies the lowest achiev-
able WER for all the re-scoring experiments reported in the ta-
ble. There is considerable room for improvement in both SAE
and AAVE sections.

Next, we re-score the N-best candidates with the baseline
acoustic models and the extended lexicon that incorporates the
phonological rules from Table 1. The performance of this max-
imum likelihood re-scoring pass is denoted as “ML re-scoring”.
The WER improves on the AAVE portion but not on the SAE
portion. This may be an indicator of the utility and relevance of
the phonological rules for AAVE.

Instead of ML re-scoring, we use canonical phones Φc as
features in a discriminative model. The performance of this
model is marginally better than the ML re-scoring for both SAE
and AAVE. Increasing the complexity of the model, we inves-
tigate the utility of features that encode both the transformed
surface form and canonical forms Φps:pc . The additional com-
plexity does not appear to be particularly useful in this data set.
The learned transforms may be useful in identifying a smaller
subset of useful transforms for ML re-scoring, but we did not
explore this further.

2.6.2. Joint discriminative pronunciation and language models

As the proposed estimation framework allows us to easily learn
parameters from different ASR components jointly, we analyze
the interaction between the language model and the pronuncia-
tion model. The language model is represented using unigram
and bigrams word features Φw.

As shown in Table 3 discriminative language models
(DLMs) are more useful for AAVE data than for SAE data.
They provide gains about 1.5% for the AAVE test set, but about
0.5% for the SAE test set.

Next, we investigate the effect of jointly estimating the pa-
rameters of the discriminative language model Φw and the pro-
nunciation model, either with Φpc or with Φps:pc . Including
pronunciation features into the discriminative language mod-
els provides further consistent gains, especially for the AAVE
data. The best results among all models are obtained when the
discriminative language model and the discriminative pronun-
ciation models are estimated jointly.

In summary, a discriminative model that jointly estimates
the parameters of the language model and the pronunciation
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SAE AAVE
#FU α0 Xval #FC test #FU α0 Xval #FC test

Baseline - - 22.3 - 25.2 - - 36.1 - 38.2
Oracle - - 14.8 - 16.6 - - 26.7 - 28.1

Pronunciation model
ML re-scoring - - 22.4† - 25.3† - - 35.9 - 37.7
Φpc 0.9K 0.45 21.8 18.5M 25.0† 1.0K 0.35 35.1 20.7M 37.0
Φps:pc 1.4K 0.45 21.9 18.3M 25.1† 1.5K 0.35 35.1 20.7M 36.9

Joint pronunciation model
Φw 48.5K 0.25 21.8 6.9M 24.7 61.0K 0.25 34.9 4.1M 36.7
Φw,Φpc 60.5K 0.45 21.5 22.0M 24.4 76.8K 0.40 34.6 24.7M 36.2
Φw,Φps:pc 59.9K 0.55 21.7 21.9M 24.5 67.1K 0.45 34.6 24.8M 36.1

Table 3: Comparison of performance (WER) of discriminative models on SAE and AAVE portions of the corpus using features from
different levels—words (Φw), canonical forms (Φpc ) and associated transformation of canonical form (Φps:pc ). Fu and Fc denote the
number of unique features in the model and the number of times they were employed in the respective test sets, respectively.

model improves the performance of the AAVE recognizer by
2.1% WER of which 0.6% can be attributed to pronuncia-
tion models. As expected, improvements on the SAE data are
smaller since the canonical pronunciations are well-matched to
SAE and the training data used in the baseline recognizer.

3. Summary
In this paper, we develop a discriminative pronunciation model
which can be jointly estimated with the discriminative language
model. We evaluate the effectiveness of the models on a corpus
of SAE and AAVE speakers. Our results show that the dis-
criminative language model and the discriminative pronuncia-
tion model improve the performance of the AAVE data signifi-
cantly more than of the SAE data. The discriminative pronun-
ciation model is more effective than an equivalent ML model.
We also obtain further gains when both the language model and
the pronunciation model are jointly estimated. In all, we report
a gain of 0.8% WER on SAE and 2.1% WER on AAVE.

When the knowledge-based rules are not available, the
phone transformations could be extracted from the training data,
for example, by running Levenshtein alignment between the 1-
best phone sequence and reference phone sequence for each
training sample. Then, we could learn the weights for the data-
driven phone transformations with the proposed discriminative
pronunciation model. The discriminative model should filter
out the transformations that are not relevant and just assign
weights to the transformations that characterize the dialect from
the task data.

In future publication, we will report results on our ongo-
ing work where we find that, despite their simplicity, the allo-
phone state transitions provide most of the gain observed from
the phone-based pronunciation models and that the discrimina-
tive models provide gains even after acoustic model adaptation.
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