
Weighted finite-state
transducers:
the later years

Kyle Gorman
Graduate Center, City University of New York & Google

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

We are now at nearly a decade into what has been called “deep learning
tsunami” (Manning, 2015). Yet weighted finite-state transducers continue
to play a crucial role in industrial speech and language technologies.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

A battle between two great powers?

• knowledge-based vs. data-driven
• rationalism vs. empiricism
• neats vs. scruffies
• cowboys vs. aliens

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Text normalization

Many speech and language technologies map between “written” and
“spoken” representations of language. Text normalization (Sproat et al.,
2001) refers to mappings between pseudo-ideographic representations
like $4.20 to more pronounceable representations like four dollars and
twenty cents.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Semiotic categories (Ebden and Sproat, 2014)

• Cardinal: 69→ sixty nine
• Date: 11/2/1985→ November second nineteen eighty five
• Decimal: 23.3→ twenty three point three
• Electronic: kgorman@gc.cuny.edu→ k gorman at gc dot cuny dot
edu

• Fraction: 2/5→ two fifths
• Measure: 12kg→ twelve kilograms
• Money: $5.96→ five dollars and ninety six cents
• Ordinal: 69th→ sixty ninth
• Roman numeral: LIV→ fifty four
• Telephone: 566-6123→ five six six, six one two three
• Time: 11:58→ eleven fifty eight

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Wikipedia (“written” domain)

The giraffe has an extremely elongated neck, which can be up to 2 m (6 ft
7 in) in length, accounting for much of the animal’s vertical height. Each
cervical vertebra is over 28 cm (11 in) long. They comprise 52-54 percent
of the length of the giraffe’s vertebral column, compared with the 27–33
percent typical of similar large ungulates, including the giraffe’s closest
living relative, the okapi.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Wikipedia (“spoken” domain)

The giraffe has an extremely elongated neck, which can be up to two
meters (six feet seven inches) in length, accounting for much of the
animal’s vertical height. Each cervical vertebra is over twenty eight
centimeters (eleven inches) long. They comprise fifty two to fifty four
percent of the length of the giraffe’s vertebral column, compared with the
twenty seven to thirty three percent typical of similar large ungulates,
including the giraffe’s closest living relative, the okapi.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Applications

• In text-to-speech synthesis, the front-end is responsible for
providing pronunciations for semiotic classes.

• In automatic speech recognition:
• the written text used to train language models are converted to
spoken form.

• spoken form transcriptions from the recognizer are converted back
to written form (e.g., Shugrina, 2010; Pusateri et al., 2017).

• In information extraction, verbalizations can be used as a canonical
form for spoken and the various written forms of dates, times, etc.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Machine learning for text normalization at Google

• Sentence boundary detection (Sproat and Hall, 2014)
• English abbreviation expansion (Roark and Sproat, 2014; Gorman
et al., 2021)

• Grapheme-to-phoneme prediction (Jansche, 2014; Rao et al., 2015)
• Russian word stress prediction (Hall and Sproat, 2013)
• Number name generation (Gorman and Sproat, 2016; Ritchie et al.,
2019)

• Letter sequence prediction (Sproat and Hall, 2014)
• Homograph disambiguation (Gorman et al., 2018)
• End-to-end research (Ng et al., 2017; Sproat and Jaitly, 2017; Zhang
et al., 2019)

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

But. . .

• Yet nearly all text normalization is still done with hand-written
language-specific grammars, just like 25 years ago (e.g., Sproat,
1996), not with sequence-to-sequence neural networks.

• The required native speaker-cum-computational-linguistic
sophistication needed to develop and maintain these grammars is
thin on the ground and this is the major barrier to
internationalization in speech technology.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Outline

• Formalization
• OpenFst and friends
• Some new(ish) WFST algorithms:

• general-purpose WFST optimization
• A* shortest string decoding over non-idempotent semirings

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Formalization

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Figure: The humble gumball machine. (Image credit: Wikimedia Commons.)

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

State machines

State machines are systems whose behavior can be described solely in
terms of a set of states—corresponding roughly to “memory”—and arcs,
transitions between those states. One familiar example of a state
machine—encoded in hardware rather than software—is the
old-fashioned gumball machine. Each state of the gumball machine is
associated with actions such as

• turning the knob,
• inserting a coin, or
• emitting a gumball.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Figure: A state diagram describing a gumball machine; bold vertices indicate
initial states and double-struck vertices indicate final states.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Preliminaries

Following the practice used in the OpenFst library, we define one
automaton type—a single-source finite-state two-way ε-transducer—and
derive other types as special cases.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Monoids

A monoid is a pair (Ë, •) where Ë is a set and • is a binary operator over
Ë with properties of:

• closure: [a, b ∈ Ë : a • b ∈ Ë.
• associativity: [a, b, c ∈ Ë : (a • b) • c = a • (b • c).
• identity: \e ∈ Ë : e • a = a • e = a.

A monoid:
• is commutative in the case that [a, b ∈ Ë : a • b = b • a.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Semirings

A semiring is a five-tuple (Ë, ⊕, ⊗, 0̄, 1̄) such that:
• (Ë, ⊕) is a commutative monoid with identity element 0̄.
• (Ë, ⊗) is a monoid with identity element 1̄.
• [a, b, c ∈ Ë : a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c).
• [a ∈ Ë : a ⊗ 0̄ = 0̄ ⊗ a = 0̄.

A semiring:
• is zero-sum-free if non-0̄ elements cannot sum to 0̄; that is,
[a, b ∈ Ë : a ⊕ b implies a = b = 0̄.

• is idempotent if ⊕ is idempotent; that is, [a ∈ Ë : a ⊕ a = a.
• has the path property if [a, b ∈ Ë : a ⊕ b ∈ {a, b}.
• that has the path property is also idempotent.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Order

• The natural order of an idempotent semiring is a boolean operator
� such that [a, b ∈ Ë : a � b if and only if a ⊕ b = a.

• In a semiring with the path property, the natural order is a total
order; that is, [a, b ∈ Ë, either a � b or b � a.

• A semiring:
• is monotonic if [a, b, c ∈ Ë, a � b implies

• a ⊕ c � b ⊕ c,
• a ⊗ c � b ⊗ c, and
• c ⊗ a � c ⊗ b.

• is negative if 1̄ � 0̄.

• In a monotonic negative semiring, [a, b ∈ Ë : a � 0̄ and a ⊕ b � b.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Ë ⊕ ⊗ 0̄ 1̄ �

Plus-times Ò+ + × 0 1 ≥

Max-times Ò+ max × 0 1 ≥

Log Ò ∪ {−∞,+∞} ⊕log + +∞ 0 ≤

Tropical Ò ∪ {−∞,+∞} min + +∞ 0 ≤

Table: Common monotonic negative semirings; a ⊕log b = −ln(e−a + e−b).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Weighted finite-state transducers

A weighted finite-state transducer (WFST) is defined by a six-tuple
(Q, s, Σ,Φ,ω, δ) and a semiring (Ë, ⊕, ⊗, 0̄, 1̄) where:

• Q is a finite set of states.
• s ∈ Q is the initial or start state.
• Σ is the input alphabet.
• Φ is the output alphabet.
• ω ⊆ Q × Ë is the final weight function.
• δ ⊆ Q × (Σ ∪ {ε}) × (Φ ∪ {ε}) × Ë × Q is the transition relation.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Paths

A path through an transducer p is a 4-tuple consisting of:
• a state sequence q[p] = q1, q2, . . . , qn, ∈ Qn

• a weight sequence k[p] = k1, k2, . . . , kn ∈ Ën

• an input string x[p] = x1, x2, . . . , xn ∈ (Σ ∪ {ε})n

• an output string y[p] = y1, y2, . . . , yn ∈ (Φ ∪ {ε})n

subject to the constraint that [i ∈ [1, n] : (qi, xi, yi, ki, qi+1) ∈ δ .

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Complete paths

• A state q ∈ Q is final if ω(q) , 0̄.
• Let F = {q ` ω(q) , 0̄} denote the set of final states.
• A path is complete if:

• (s, x1, y1, k1, q1) ∈ δ .
• qn ∈ F.

• The weight of a complete path is given by

k̄ = *.
,

⊗
ki∈k[p]

ki
+/
-
⊗ ω(qn).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Properties

A transducer is:
• acyclic if there exists a topological ordering, an ordering of the
states such that if there is a transition from state q to r then q is
ordered before r, and cyclic otherwise.

• deterministic if for each state q ∈ Q, there is at most one transition
with a given input label x ∈ (Σ ∪ {ε}) from that state, and
non-deterministic otherwise.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Figure: State diagrams showing a weighted NFA (left) and an equivalent DFA
(right).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Weighted transduction

A transducer is said to map or transduce from string x to string y with
weight k̄ just in case there exists a path p with input string x, output
string y, and complete path weight k̄.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Special cases

• An unweighted transducer—one where all weights are either 0̄ or
1̄—corresponds to a rational relation.

• A weighted acceptor—one where all input and output labels
match—corresponds to a weighted (e.g., probabilistic) distribution
over a regular language.

• An unweighted acceptor corresponds to a regular language.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

OpenFst and friends

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

OpenFst (Allauzen et al., 2007)

OpenFst is a open-source C++17 library for weighted finite state
transducers developed at Google. Among other things, it is used in:

• automatic speech(-to-text) recognizers (e.g., Kaldi and many
commercial products).

• text-to-speech synthesizers (as part of the “front-end”).
• input method engines (e.g., mobile text entry systems).
• many other kinds of text hacking.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Features

• One serialization format (.fst) is shared across all OpenFst and
OpenGrm libraries.

• FSTs can be compacted; e.g., unweighted string acceptors can be
stored as integer arrays.

• Collections of FSTs can be stored in FST archives (.far), a
shardable key-value store.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

OpenFst design

There are (at least) four layers to OpenFst:

• a C++ template/header library in <fst/*.h>
• a C++ “scripting” library in <fst/script/*.{h,cc}>
• CLI programs in /usr/local/bin/*
• a Python extension module pywrapfst

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

OpenGrm

• Baum-Welch (Gorman et al., 2021): CLI tools and libraries for
performing expectation maximization on WFSTs

• NGram (Roark et al., 2012): CLI tools and libraries for building
conventional n-gram language models

• Pynini (Gorman, 2016; Gorman and Sproat, 2021): Python extension
module for WFST grammar development

• SFst (Allauzen and Riley, 2018): CLI tools and libraries for building
stochastic FSTs

• Thrax (Roark et al., 2012): DSL-based compiler for WFST grammar
development

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

General-purpose WFST optimization

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Optimal for what?

There are many ways a WFST might be said to be optimal. For instance, a
WFST could be optimal for:

• composition efficiency (i.e., by eliminating internal ε-labels or
moving them later along paths).

• footprint in memory (i.e., by reducing the number of states and arcs).
• cache utilization or other application-specific use patterns.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Minimality

• An automaton is minimal if it expresses its (weighted) language or
relation using the minimal number of states.

• Efficient algorithms exist for minimizing deterministic automata
(e.g., Mohri, 2000).

• However, finding an equivalent deterministic automaton for an
arbitrary WFST can be computationally expensive if not impossible.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Implementation

• Pynini Fst objects have a destructive instance method
optimize.

• Thrax has a function Optimize.

Both share the same C++ template implementation in optimize.h.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Preprocessing

We first apply ε-removal (Mohri, 2002a) if the input WFST is not known to
be ε-free.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Optimizing acceptors

Not all acceptors are determinizable.
• Acceptors which do not have weights other than 0̄ and/or 1̄ along
their cycles—as well as acylic and unweighted acceptors—are
determinizable over a wide variety of semirings (Mohri, 2009). We
then apply determinization and minimization if the acceptor is not
known to be deterministic.

• However, it is difficult to determine whether determinization will
even terminate for cyclic weighted non-deterministic acceptors
(Allauzen and Mohri, 2003). Therefore, we heuristically apply
determinization and minimization to such acceptors viewed as
unweighted. This is guaranteed to halt.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Optimizing transducers

Similarly, not all transducers are determinizable.
• Even transducers without weighted cycles may be non-functional.
Therefore, we heuristically apply determinization and minimization
to such transducers viewed as acceptors. This is guaranteed to halt.

• For cyclic weighted transducers, we heuristically apply
determinization and minimization to such transducers viewed as
unweighted acceptors. This is also guaranteed to halt.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Postprocessing

When an weighted cyclic automaton is heuristically optimized as if it was
unweighted, we also apply arc-sum mapping as a post-processing step.
This eliminates trivial (i.e., same-state) cases of non-determinism due to
identically labeled arcs with different weights leaving the same state,
which may be introduced during heuristic determinization-minimization.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Figure: Finite transducer before optimization.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Figure: Equivalent finite transducer after optimization.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Evaluation

• We apply the above algorithm to a sample of 700 speech
recognition word lattices derived from Google Voice Search traffic,
lattices previously used Mohri and Riley (2015) to evaluate related
algorithms.

• Each lattice path represents a single hypothesis transcription from a
production-grade automatic speech recognizer.

• These lattices are acyclic and ε-free, non-deterministic, and
weighted, and thus the algorithm above is guaranteed to produce a
deterministic, minimal, ε-free acceptor.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Figure: Word lattice optimization with the proposed algorithm. The x-axis shows
the number of states before optimization; the y-axis shows the number of states
after optimization.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Results

• Optimization substantially reduces the number of states,
particularly for the larger lattices.

• The post-optimization “after” automaton is never larger than the
“before” automaton.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Related work

An earlier version of this algorithm was proposed by Allauzen et al. (2004).
The above evaluation is reported by Gorman and Sproat (2021, §4.5).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

A* shortest string decoding for
non-idempotent semirings

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Motivations

Various circumstances force us to build WFST models we cannot decode
efficiently or exactly due to restrictions on shortest-path algorithms. We
attempt to remedy these restrictions.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Three types of expectation maximization

• In vanilla EM (Dempster et al., 1977), we collect counts in semirings
isomorphic to Plus-Times.

• In Viterbi EM (Brown et al., 1993, 293), we collect counts in semirings
isomorphic to Max-Times.

• In lateen EM (Spitkovsky et al., 2011), we alternate between vanilla
and Viterbi EM according to some training schedule.

Yet there is no way to compute the shortest path in semirings isomorphic
to Plus-Times.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Preliminaries

Without loss of generality, we consider single-source ε-free acyclic
acceptors, using z[p] = x[p] = y[p] to denote the string of a path p.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Shortest distance

Let Pq→r be the set of all paths from q to r where q, r ∈ Q. Then:

• the forward shortest distance α ⊆ Q×Ëmaps from a state q ∈ Q to
the ⊕-sum of the ⊗-product of the weights of all paths from s to q:

α(q) =
⊕
p∈Ps→q

⊗
ki∈k[p]

ki.

• the backwards shortest distance β ⊆ Q × Ë maps from a state
q ∈ Q to the ⊕-sum of ⊗-product of the weights of all paths from q
to any final state:

β (q) =
⊕
f ∈F

*.
,

⊕
p∈Pq→f

⊗
ki∈k[p]

ki ⊗ ω(f)
+/
-
.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Shortest path

• The total shortest distance through an automaton is given by β (s).
• The shortest path through an automaton is a complete path whose
weight is equal to β (s).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Figure: Automata over non-idempotent semirings need not have a shortest path.
Consider the figure above. If k ⊕ k � k < k′, then the total shortest distance is
k ⊕ k, which need not correspond to any one path.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Shortest string

Let Pz be a set of paths with string z ∈ Σ∗, and let the weight of Pz be

σ(z) =
⊕
p∈Pz

k̄[p].

Then a shortest string z is one such that [z′ ∈ Σ∗,σ(z) � σ(z′).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Lemma I

Lemma
In an idempotent semiring, a shortest path’s string is also a shortest
string.

Proof
Let p be a shortest path. By definition, k̄[p] � k̄[p′] for all complete
paths p′. It follows that

[z′ ∈ Σ∗ : σ(z[p]) =
⊕
p∈Pz

k̄[p] � σ(z′[p′]) =
⊕
p′∈Pz

k̄[p′]

so z[p] is the shortest string.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Companion semirings

The companion semiring of a monotonic negative semiring (Ë, ⊕, ⊗, 0̄, 1̄)
with a total order � is the semiring (Ë, ⊕̂, ⊗, 0̄, 1̄) where ⊕̂ is the
minimum binary operator for �:

a ⊕̂ b =

a if a � b

b otherwise

For example, the tropical semiring

(Ò ∪ {−∞,+∞},min,+,+∞, 0)

is the companion semiring for the log semiring

(Ò ∪ {−∞,+∞}, ⊕log,+,+∞, 0).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Lemma II

Lemma
In a DFA over a monotonic semiring, a shortest string is the string of a
shortest path in that DFA viewed over the corresponding companion
semiring.

Proof
Determinism implies that for all complete path p′, k̄[p′] = σ(z[p′]). Let z
be the shortest string in the DFA and p the unique path admitting the
string z. Then

k̄[p] = σ(z) � σ(z[p′]) = k̄[p′]

for any complete path p′. Hence

k̄[p] = F⊕
p′∈Ps→F

k̄[p′].

Thus p is a shortest path in the DFA viewed over the companion semiring.
http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Shortest-first search

Dijkstra’s (1959) algorithm is an example of a shortest-first search strategy
appropriate for idempotent semirings. At every iteration, the algorithm
explores the state q which minimizes α(q), the shortest distance from
the initial state s to q, until all states have been visited.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

A* search

In the variant known as A* search (Hart et al., 1968), search priority is
instead a function of z ⊆ Q × Ë, known as the heuristic, which gives an
estimate of the weight of paths from some state to a final state. At every
iteration, A* instead explores the state q which minimizes α(q) ⊗ z(q).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Dijkstra again

Then, Dijkstra’s algorithm is just a special case of A* search using z = 1̄.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Heuristics

A heuristic is:
• admissible if it never overestimates the shortest distance to a state.
That is, it is admissible if [q ∈ Q : z(q) � β (q).

• consistent if it never overestimates the cost of reaching a successor
state. That is, it is consistent if [q, r ∈ Q such that z(q) � k ⊗ z(r)
if (q, z, k, r) ∈ δ , i.e., if there is a transition from q to r with some
label z and weight k.

If z is admissible and consistent, A* search is guaranteed to find a
shortest path (if one exists) after visiting all states such that z(q) � β (s)
(Hart et al., 1968, 104f.).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Preliminaries

Consider an acyclic, ε-free WFSA over a monotonic negative semiring
(Ë, ⊕, ⊗, 0̄, 1̄) with total order � for which we wish to find the shortest
string. The same WFSA can also be viewed as a WFSA over the
corresponding companion semiring (Ë, ⊕̂, ⊗, 0̄, 1̄), and we denote by β̂
the backward shortest-distance over this companion semiring.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Proof I

Theorem
The backwards shortest distance of an WFSA over a monotonic negative
semiring is an admissible heuristic for the A* search over its companion
semiring.

Proof
In a monotonic negative semiring, the ⊕-sum of any n terms is
upper-bounded by each of the n terms and hence by the ⊕̂-sum of these
n terms. It follows that

β (q) =
⊕
p∈Pq→F

k̄[p] � E⊕
p∈Pq→F

k̄[p] = β̂ (q)

showing that z = β is an admissible heuristic for β̂ .

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Proof II

Theorem
The backwards shortest distance of an WFSA over a monotonic negative
semiring is a consistent heuristic for the A* search over its companion
semiring.

Proof
We again use the property that an ⊕-sum of any n terms is
upper-bounded by any of these terms. If (q, z, k, r) be a transition in δ

β (q) =
⊕
p∈Pq→F

k̄[p] =
⊕

(q,z′,k′,r′)∈δ

k′ ⊗ β (r′) � k ⊗ β (r)

showing that z = β is a consistent heuristic.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Naïve algorithm

A naïve algorithm suggests itself. Given a non-deterministic WFSA over
the monotonic negative semiring (Ë, ⊕, ⊗, 0̄, 1̄):

• apply determinization to obtain an equivalent DFA.
• compute βd, the DFA’s backwards shortest distance.
• perform A* search using βd as the heuristic.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Exponential blowup

Determinization has an exponential worse-case complexity in time and
space and is often prohibitive in practice. Yet determinization—and the
computation of elements of βd—only need to be performed for states
actually visited during search.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Our algorithm

Let βn denote backwards shortest distance over a non-deterministic
WFSA over the monotonic negative semiring (Ë, ⊕, ⊗, 0̄, 1̄). Then:

• compute βn over (Ë, ⊕, ⊗, 0̄, 1̄).
• lazily determinize the WFSA (Mohri, 1997), lazily computing βd from
βn over (Ë, ⊕, ⊗, 0̄, 1̄)

• perform A* search using βd as the heuristic over the companion
semiring (Ë, ⊕̂, ⊗, 0̄, 1̄).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Evaluation

We search for the shortest string over a sample of 700, acyclic, ε-free
non-deterministic WFSA word lattices derived from Google Voice Search
traffic. For this, we use the OpenGrm-BaumWelch command-line tool
baumwelchdecode to implement the above algorithm over the log
semiring, with the tropical semiring as the companion semiring.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Figure: Word lattice decoding with the proposed algorithm. The x-axis shows the
number of states in each word lattice NFA; the y-axis shows the number of states
visited by A* decoding. Both axes are log scale.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Results

• The relationship between the size of the NFA and the number of DFA
states visited by the proposed decoding method appears roughly
monomial (i.e., log-log linear).

• The size of the full DFA was measured by applying the OpenFst
command-line tool fstdeterminize to the lattices, which
produces an approximately 7x increase in the size of the lattices.

• From this we infer that the proposed heuristic substantially reduces
the number of DFA states that are visited.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Applications

Single shortest string over non-idempotent semirings can be used for
exact decoding of:

• interpolated (e.g., Jelinek et al., 1983) language models of the form

P̂(w ` h) = λhP̃(w ` h) + (1 − λh)P̂(w ` h′).

• “decipherment” models (e.g., Knight et al., 2006) of the form

P̂(p ` c) ∝ P(p)P(c ` p)

trained with classic expectation maximization.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Related work

Mohri and Riley (2002) describe a related algorithm for finding the n-best
strings over an idempotent finite-state automaton. Much like the
algorithm proposed here, they use A* search and on-the-fly
determinization; however, they do not consider non-idempotent
semirings.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Questions?

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Acknowledgments

Thanks to:
• Kevin Knight and Richard Sproat
• Cyril Allauzen, Sasha Gutkin, Brian Roark, Christo Kirov, Jeffrey
Sorenson, Lawrence Wolf-Sonkin

• Jillian Chang, Jackson Lee, Michael McAuliffe, Arya McCarthy

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Further reading

• Gorman and Sproat, 2021: introduces WFST text processing in Python
• Mohri, 2009: reviews major WFST algorithms
• Mohri, 2002b: discusses shortest-distance and shortest-path
algorithms

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

More information

openfst.org

opengrm.org

baumwelch.opengrm.org

ngram.opengrm.org

pynini.opengrm.org

thrax.opengrm.org

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Backup slides

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Hybridization

• Filtration (Ng et al., 2017; Sproat and Jaitly, 2017; Zhang et al., 2019;
Pusateri et al., 2017)

• Data augmentation (Schwartz et al., 2019; Lane and Bird, 2020)
• Distillation (Weiss et al., 2018; Suresh et al., 2021)
• Weighting (Rastogi et al., 2016; Lin et al., 2019)

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

CUDAfication

• WFST algorithms on CUDA (Argueta and Chiang, 2017, 2018)
• Decoder graphs on CUDA (Chen et al., 2018; Fukunaga et al., 2019;
Braun et al., 2020)

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References I

C. Allauzen and M. Mohri. Efficient algorithms for testing the twins
property. Journal of Automata, Languages and Combinatorics, 8(2):
117–144, 2003.

C. Allauzen and M. Riley. Algorithms for weighted finite automata with
faillure transitions. In Proceedings of the 20th International Conference
on Implementation and Application of Automata, pages 46–58, 2018.

C. Allauzen, M. Mohri, M. Riley, and B. Roark. A generalized construction of
integrated speech recognition transducers. In International Conference
on Acoustics, Speech, and Signal Processing, pages 761–764, 2004.

C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri. OpenFst: a
general and efficient weighted finite-state transducer library. In
Proceedings of the 12th International Conference on Implementation
and Application of Automata, pages 11–23, 2007.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References II
A. Argueta and D. Chiang. Decoding with finite-state transducers on GPUs.
In Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 1, Long Papers,
pages 1044–1052, 2017.

A. Argueta and D. Chiang. Composing finite state transducers on GPUs. In
Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 2697–2705,
2018.

H. Braun, J. Luitjens, R. Leary, T. Kaldewey, and D. Povey. GPU-accelerated
Viterbi exact lattice decoder for batched online and offline speech
recognition. In International Conference on Acoustics, Speech, and
Signal Processing, pages 7874–7878, 2020.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References III
P. Brown, S. A. Della Pietra, V. J. Della Pietra, and R. L. Mercer. The
mathematics of statistical machine translation: parameter estimation.
Computational Linguistics, 19(2):263–311, 1993.

Z. Chen, J. Luitjens, H. Xu, Y. Wang, D. Povey, and S. Khudanpur. A
GPU-based WFST decoder with exact lattice generation. In Proceedings
of INTERSPEECH, pages 2212–2216, 2018.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical
Society, Series B, 39(1):1–38, 1977.

E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269–271, 1959.

P. Ebden and R. Sproat. The Kestrel TTS text normalization system.
Natural Language Engineering, 21:1–21, 2014.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References IV
D. Fukunaga, Y. Tanaka, and Y. Kageyama. GPU-based WFST decoding with
extra large language model. In Proceedings of INTERSPEECH, pages
3815–3819, 2019.

K. Gorman. Pynini: a Python library for weighted finite-state grammar
compilation. In ACL Workshop on Statistical NLP and Weighted
Automata, pages 75–80, 2016.

K. Gorman and R. Sproat. Minimally supervised models for number
normalization. Transactions of the Association for Computational
Linguistics, 4:507–519, 2016.

K. Gorman and R. Sproat. Finite-State Text Processing. Morgan & Claypool,
2021.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References V
K. Gorman, G. Mazovetskiy, and V. Nikolaev. Improving homograph
disambiguation with supervised machine learning. In Proceedings of
the Eleventh International Conference on Language Resources and
Evaluation, pages 1349–1352, 2018.

K. Gorman, C. Kirov, B. Roark, and R. Sproat. Structured abbreviation
expansion in context. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 995–1005, 2021.

K. Hall and R. Sproat. Russian stress prediction using maximum entropy
ranking. In Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 879–883, 2013.

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimal cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References VI
M. Jansche. Computer-aided quality assurance of an Icelandic
pronunciation dictionary. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation, pages 2111–2114,
2014.

F. Jelinek, L. R. Bahl, and R. L. Mercer. A maximum likelihood approach to
continuous speech recognition. IEEE Transactions on Pattern Analysis
& Machine Intelligence, 5:179–190, 1983.

K. Knight, A. Nair, N. Rashod, and K. Yamada. Unsupervised analysis for
decipherment problems. In Proceedings of the COLING/ACL 2006 Main
Conference Poster Sessions, pages 499–506, 2006.

W. Lane and S. Bird. Bootstrapping techniques for polysynthetic
morphological analysis. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages 6652–6661, 2020.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References VII
C.-C. Lin, H. Zhu, M. R. Gormley, and J. Eisner. Neural finite-state
transducers: beyond rational relations. In Proceedings of the 2019
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 272–283, 2019.

C. D. Manning. Last words: computational linguistics and deep learning.
Computational Linguistics, 41(4):701–707, 2015.

M. Mohri. Finite-state transducers in language and speech processing.
Computational Linguistics, 23(2):269–311, 1997.

M. Mohri. Minimization algorithms for sequential transducers. Journal of
Automata, Languages and Combinatorics, 234(1–2):177–201, 2000.

M. Mohri. Generic epsilon-removal and input epsilon-normalization
algorithms for weighted transducers. International Journal of Computer
Science, 13(1):129–143, 2002a.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References VIII
M. Mohri. Semiring frameworks and algorithms for shortest-distance
problems. Journal of Automata, Languages and Combinatorics, 7(3):
321–350, 2002b.

M. Mohri. Weighted automata algorithms. In M. Droste, W. Kuich, and
H. Vogler, editors, Handbook of weighted automata, pages 213–254.
Springer, New York, 2009.

M. Mohri and M. Riley. An efficient algorithm for the n-best-strings
problem. In 7th International Conference on Spoken Language
Processing, pages 1313–1316, 2002.

M. Mohri and M. D. Riley. On the disambiguation of weighted automata. In
Proceedings of the 20th International Conference on Implementation
and Application of Automata, pages 263–278, 2015.

A. H. Ng, K. Gorman, and R. Sproat. Minimally supervised
written-to-spoken text normalization. In ASRU, pages 665–670, 2017.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References IX
E. Pusateri, B. R. Ambati, E. Brooks, O. Platek, D. McAllaster, and V. Nagesha.
A mostly data-driven approach to inverse text normalization. In
Proceedings of INTERSPEECH, pages 2784–2788, 2017.

K. Rao, F. Peng, H. Sak, and F. Beaufays. Grapheme-to-phoneme
conversion using long short-term memory recurrent neural networks.
In ICASSP, pages 4225–4229, 2015.

P. Rastogi, R. Cotterell, and J. Eisner. Weighting finite-state transductions
with neural context. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 623–633, 2016.

S. Ritchie, R. Sproat, K. Gorman, D. van Esch, C. Schallhart, B. Nikos,
B. Brard, J. F. Mortensen, M. Holt, and E. Mahon. Unified verbalization
for speech recognition & synthesis across languages. In INTERSPEECH,
pages 3530–3534, 2019.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References X
B. Roark and R. Sproat. Hippocratic abbreviation expansion. In
Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pages 364–369,
2014.

B. Roark, R. Sproat, C. Allauzen, M. Riley, J. Sorensen, and T. Tai. The
OpenGrm open-source finite-state grammar software libraries. In
Proceedings of the ACL 2012 System Demonstrations, pages 61–66, 2012.

L. Schwartz, E. Chen, B. Hunt, and S. L. Schreiner. Bootstrapping a neural
morphological analyzer for St. Lawrence Island Yupik from a
finite-state transducer. In Proceedings of the 3rd Workshop on the Use
of Computational Methods in the Study of Endangered Languages
Volume 1 (Papers), pages 87–96, 2019.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References XI
M. Shugrina. Formatting time-aligned ASR transcriptions for readability.
In Human Language Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computational
Linguistics, pages 198–206, 2010.

V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. Lateen EM: unsupervised
training with multiple objectives, applied to dependency grammar
induction. In Proceedings of the 2011 Conference on Empirical Methods
in Natural Language Processing, pages 1269–1280, 2011.

R. Sproat. Multilingual text analysis for text-to-speech synthesis. Natural
Language Engineering, 2(4):369–380, 1996.

R. Sproat and K. Hall. Applications of maximum entropy rankers to
problems in spoken language processing. In INTERSPEECH, pages
761–764, 2014.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References XII
R. Sproat and N. Jaitly. An RNN model of text normalization. In
INTERSPEECH, pages 754–758, 2017.

R. Sproat, A. W. Black, S. Chen, S. Kumar, M. Ostendorf, and C. Richards.
Normalization of non-standard words. Computer Speech & Language,
15:287–333, 2001.

A. T. Suresh, B. Roark, M. Riley, and V. Schogol. Approximating probabilistic
models as weighted finite automata. Computational Linguistics, 47(2):
221–254, 2021.

G. Weiss, Y. Goldberg, and E. Yahav. Extracting automata from recurrent
neural networks using queries and counterexamples. In Proceedings of
the 35th International Conference on Machine Learning, pages
5247–5256, 2018.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References XIII
H. Zhang, R. Sproat, A. H. Ng, F. Stahlberg, X. Peng, K. Gorman, and B. Roark.
Neural models of text normalization for speech applications.
Computational Linguistics, 45(2):293–337, 2019.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

