
Finite-state text
processing

Kyle Gorman
Graduate Center, City University of New York

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

About me

• 2003–2006: BA, Linguistics, University of Illinois at
Urbana-Champaign

• 2006–2012: PhD, Linguistics, University of Pennsylvania
• 2012–2014: Postdoc, Center for Spoken Language Understanding,
Oregon Health & Science University

• 2014–2015: Assistant professor, Center for Spoken Language
Understanding, Oregon Health & Science University

• 2015–present: Software engineer, Google
• 2018–present: Assistant professor, Graduate Center, City University
of New York

Other stuff: music, exercise, cooking, blogging, TNR

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Other things

• I will be at the social events later this week.
• I will be giving a more advanced talk on related materials at the
Information Sciences Institute (Marina del Rey) on Thursday.

• Say hi if you’re ever in New York, in Midtown East near the Empire
State Building and Koreatown.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Learning goals

In this workshop, you will discover:
• finite-state transducers (FSTs) and their connections to:

• formal language theory and
• rewrites system;

• and Pynini, a Python library for finite-state development.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Why FSTs?

FSTs are:

• are formally and conceptually simple:
• they admit proof-theoretic study and
• polynomial-time algorithms.

• have natural affinities for processing and generating language.
• are one of the main methods for delivering multilingual SLT to users.
• are already in your life:

• they on your phone and
• in your browser,

• have proved surprisingly resilient to the “deep learning tsunami”
(Manning, 2015).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

FSTs at Google

FSTs are used at Google for, e.g.:
• automatic speech recognizers (ASR), particularly embedded
low-latency models,

• the front-end of text-to-speech synthesizers (TTS), and
• input method engines (IME) for mobile text entry.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Pynini at Google

Pynini is used extensively at Google for speech technologies, e.g.:
• Gorman and Sproat (2016) describe an algorithm—implemented in
Pynini—can induce number name grammars from a few-hundred
labeled examples.

• Ritchie et al. (2019) describe how Pynini is used to build “unified”
verbalization grammars shared by ASR and TTS.

• Ng et al. (2017) constrain a linear-model-based verbalizers with FST
covering grammars.

• Zhang et al. (2019) constrain RNN-based verbalizers with FST
covering grammars.

• Gorman et al. (2021) describe an FST-based noisy channel model for
expanding abbreviations in text.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

How it’s going to go

• I’m going to show you math.
• I’m going to show you pictures.
• I’m going to show you Python.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

How to learn

• I’m going to show you math:
• But I’m going to tell you what it means,
• so it’s okay to sorta let it wash over.

• I’m going to show you pictures:
• It is important to understand how these are interpreted,
• though depending on graphics to understand what an FST does can
become a crutch.

• I’m going to show you Python:
• I will type some of the examples into Google Colab
(https://colab.research.google.com/), and

• you’re welcome to do the same yourself.

http://wellformedness.com/courses/fstp/

https://colab.research.google.com/
http://wellformedness.com/courses/fstp/

The book

Nearly everything I will say today can be found, in greater detail, in
Finite-State Text Processing (Gorman and Sproat, 2021). Your library
probably has a copy via the Synthesis Digital Library collection. (USC’s
library does.)

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Outline

• Formal preliminaries
• Finite-state acceptors
• Finite-state transducers
• Rewrite rules

Motivating examples and demos will be weaved throughout. Note that
we’ll also take the coffee break at 10:45–11:00.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Formal preliminaries

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Why formal languages?

Formal languages are relevant both to the cognitive science of
language—by giving a precise definition of the notion “language”, they
allow us to, for example, define what it means to learn a language—and
for speech and language technologies.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Sets

A set is an abstract, unordered collection of distinct objects, the members
or elements of that set.

• They are an abstract, logical notion, and we do not presuppose any
particular method of representing them in hardware or software.

• They are unordered in the sense that we do not need there to be
any natural order among the elements or members of a set.

• Sets may either be finite (e.g., the set consisting of students in this
class) or infinite (e.g., the set of grammatical sentences of English).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Set membership

• Members of a set can be of any type, including other sets.
• Set membership is indicated with the ∈ symbol.

• The expression x ∈ X is read “x is a member of X”.
• We can also deny this relation using <.

• The expression x < X is read “x is not a member of X”.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Subsets

• The set X is said to be a subset of another set Y just in the case that
every member of X is also a member of Y. We indicate this using ⊆ .

• The expressions X ⊆ Y is read “X is a subset of Y”.
• We can also deny this relation using *.

• The expression X * Y is read “X is not a subset of Y”.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

The empty set

The set with no members is known as the empty set. It is written as ∅ (i.e.,
rather than an empty set of curly braces).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Problem

How are sets, as defined here, like Python set objects? How are they
different?

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Solution

• Like Python sets, our sets are unordered.
• However, objects stored in a Python set must be immutable and
hashable. (Because of this restriction, Python sets may not contain
other Python sets.)

• Python sets may not be infinite.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Set notation

By convention, we use capital Italic letters (e.g., X, Y, Z) to denote sets,
and lowercase Italic letters (e.g., x, y, z) to denote members. There are
then two ways to specify the contents of a set. . . .

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Extension (or list) notation

For finite sets, we can simply list the extension of the set, enclosed in
curly braces.

{2, 3, 5, 7}

Note that it is an accidental feature that the members of a set are listed
in a particular order; there is no natural ordering of the members of a set.
Thus all the following are equivalent.

{2, 3, 5, 7}, {7, 5, 3, 2}, {3, 2, 7, 5}, {2, 5, 3, 7}, . . .

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Predicate (or set-builder) notation

Alterantively (and necessarily, for infinite sets), we can intensionally
describe properties that uniquely identify the set’s members.

{x ` 13 ≤ x ≤ 27}

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Problem

Let:

K = {Mars, Saturn, Uranus}
L = {x ` x is a planet in our solar system}

• Is K a member of L?
• And, K a subset of L?

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Solution

• K < L
• K ⊆ L

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Set operations

Sets support several elementary logical operations including union,
intersection, and difference.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Union

The union of two sets X ∪ Y is the set that contains just the elements
which are members of X, of Y, or both X and Y. It corresponds to
disjunction operator ∨ in logic, and (loosely) to the conjunction or in
English.

X ∪ Y = {x ` x ∈ X ∨ x ∈ Y}

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Intersection

The intersection of two sets X ∩ Y is the set that contains just the
elements which are members of both X and Y. It corresponds to the
conjunction operator ∧ in logic, and to the conjunction and in English.

X ∩ Y = {x ` x ∈ X ∧ x ∈ Y}

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Difference

The difference of two sets X − Y is the set that contains just the elements
which are members of X but not members of Y.

X − Y = {x ` x ∈ X ∧ x < Y}

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Problem
Let:

K = {a, b}

L = {c, d}

M = {b, d}

K ∪ L =

L ∪ M =

K ∩ L =

K ∩ M =

L ∩ M =

K − M =

M − L =
http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Solution

K ∪ L = {a, b, c, d}

L ∪ M = {b, c, d}

K ∩ L = ∅

K ∩ M = {b}

L ∩ M = {d}

K − M = {a}

M − L = {b}

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Closure

Let • be a binary (infix) operator, and let Z be a set. Then, Z is said to be
closed with respect to (or have closure over) • if for all subsets X and Y of
Z, X • Y ∈ Z.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Closure properties of sets

Sets are closed with respect to union, intersection, and difference, among
other operators.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Pairs

A pair or two-tuple is a sequence of two elements; e.g., (a, b) is the pair
consisting of a then b.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Cross-product

The cross-product (or Cartesian product) of two sets, X × Y, is the set that
contains all pairs (x, y) where x is an element of X and y is an element of
Y.

X × Y = {(x, y) ` x ∈ X ∧ y ∈ Y}

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Relations

A (two-way or binary) relation over sets X and Y is a subset of the
cross-product X × Y.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Relation notation

By convention, lowercase Greek letters indicate relations. For binary
relations, the domain—set of inputs—and range—the set of outputs—are
usually provided upon first definition. For example, the “less than”
relation might be written λ ⊆ Ò ×Ò = {(x, y) ` x < y} where Ò is the
set of real numbers.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

N-ary relations

Three-, four- and five-way relations, and so on, are also well-defined.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Strings

Let Σ be an alphabet (i.e., a finite set of symbols). A string (or word) is any
finite ordered sequence of symbols such that each symbol is a member of
Σ. By convention monospaced (or typewriter) text is used to denote
string literals.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

The empty string

The null string with is known as the empty string. It is written ε
(“epsilon”).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Concatenation

The concatenation of two strings s and t, written st, is the string defined
by the sequence of symbols in s followed by the sequence of symbols in t
end-to-end.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Reversal

The reversal of a string s, written sR, is the string defined by the sequence
of symbols in s in reverse order.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Problem

Let:

s = aab
t = cdf

sRt =

(st)R =

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Solution

sRt = baacdf
(st)R = fdcbaa

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Languages

Sets of strings are called languages. This is merely a term of art; it is not
intended to supplant the common-sense notions of what a language is.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Concatenation (again)

If X and Y are languages, then XY contains the concatenation of each
string x ∈ X with each string y ∈ Y.

X Y = {x y ` x ∈ X ∧ y ∈ Y}

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Range concatenation

The notation Xn, where n is a natural number, denotes a language
consisting of n “self-concatenations” of X.

X0 = {ε}

X4 = XXXX

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Kleene star

The closure of a language X is the infinite union of zero or more
concatenations of X with itself. It is denoted by a superscripted asterisk.

X∗ =
⋃
i≥0

Xi

= {ε} ∪ X ∪ XX ∪ XXX ∪ . . .

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Kleene plus

A variant of closure, denoted by a superscripted plus-sign, excludes the
empty string.

X+ =
⋃
i>0

Xi

= X ∪ XX ∪ XXX ∪ . . .

= XX∗

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Kleene question mark

A superscripted question mark indicates optionality.

X? = {ε} ∪ X

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Closure properties of languages

Languages are closed with respect to:
• union, intersection, difference,
• concatenation, closure, and reversal.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Regular languages

• The empty language ∅ is a regular language.
• The empty string language {ε} is a regular language.
• If s ∈ Σ, then the singleton language {s} is a regular language.
• If X is a regular language, then its closure X∗ is a regular language.
• If X, Y are regular languages, then:

• their concatenation XY is a regular language, and
• their union X ∪ Y is a regular language.

• Other languages are not regular languages.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Regular expressions

Regular expressions are a terse representation of regular languages
which use closure, union, and concatenation. ?, 17f. describe regular
expressions as “unsung successes in standardization in computer
science”. Regular expression matching is supported by Python’s re
module, command-line tools like grep and sed, and nearly all of these
use roughly the same terse algebraic notation. By convention, we write
regular expressions in monospaced font, surrounded by forward slashes.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Correspondences: concatenation

• Concatenation is implicit in regular expressions.

/ab/ = {ab}

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Correspondences: quantifiers

• Kleene star corresponds to the quantifier *.
/a*(bb)*/ = {a}∗{bb}∗

• Kleene plus corresponds to the quantifier +.
/yes+/ = {ye}{s}+

= {yes,yess,yesss, . . .}

• The “Kleene question mark” corresponds to the quantifier ?.
/colou?r/ = {colo}{u}?{r}

= {color,colour}

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Correspondences: union
• Union ∪ corresponds to several notations:

• Square brackets indicate the union of single characters.
/[Dd]addy/ = ({D} ∪ {d}){addy}

= {Daddy,daddy}

• Square brackets can also be used to indicate a union of a range of
single characters.

/Rocky_[1-3]/ = {Rocky_}({1} ∪ {2} ∪ {3})
= {Rocky_1,Rocky_2,Rocky_3}

• The | operator indicates unions of arbitrary-length character
sequences.

/gupp(y|ies)/ = {gupp}({y} ∪ {ies})
= {guppy,guppies}

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Finite-state acceptors

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Kleene 1956

Initially, the study of

• abstract computational devices known as state machines and
• formal languages

were considered independent of one another. Kleene (1956) was one of
the first to unify these two areas of study. Kleene wished to characterize
the properties of nerve nets (McCulloch and Pitts, 1943), a primitive form
of artificial neural network. In doing so, Kleene introduced the regular
languages and formalized the connection between regular languages and
finite acceptors, a type of state machine.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Regular languages in the 20th century

• Regular languages were popularized in part by discussion of the
Chomsky(-Schützenberger) hierarchy (e.g., Chomsky and Miller, 1963).

• Regular languages were used by Thompson (1968) to create the
grep regular expression matching utility.

• Finite acceptors are used to compactly store morphological
dictionaries.

• Finite acceptors are used to compactly represent language models,
particularly in speech recognition engines.

It now seems that an enormous amount of linguistically-interesting
phenomena can be described in terms of regular languages and the
closely-related rational relations.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Negative results

At the same time, there were two important negative results:

• Syntactic grammars belong to a higher-classes of formal languages,
the mildly context-sensitive languages (Vijay-Shanker et al., 1987).

• The class of regular languages are not “learnable” from positive data
under Gold’s (1967) notion of language identification in the limit.

In practice, this means that regular languages and finite acceptors are
somewhat limited as models of syntax, though they are still well-suited
as models of phonology and morphology.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

State machines

A state machine is hardware or software whose behavior can be described
solely in terms of a set of states and arcs, transitions between those
states. In this formalism, states roughly correspond to “memory” and arcs
to “operations” or “computations”. A finite-state machine is merely a
state machine with a finite, predetermined set of states and labeled arcs.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

As directed graphs

State machines are examples of what computer scientists call directed
graphs. These are “directed” in the sense that the existence of an arc
from state q to state r does not imply an arc from r to q. In state
diagrams, we indicate this directionality using arrows.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

(image: credit: Wikimedia Commons)

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

The humble gumball machine

One familiar example of a state machine—encoded in hardware, rather
than software—is the old-fashioned gumball machine. Each state of the
gumball machine is associated with actions such as

• turning the knob,
• inserting a coin, or
• emitting a gumball.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Application

The application of an input argument to a relation is indicated using
square brackets. For instance given the successor function σ , then
σ[3] = {4} because (3, 4) ∈ σ .

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Finite-state acceptors

An finite-state acceptor (FSA) is a 5-tuple defined by:

• a finite set of states Q,
• a start or initial state s ∈ Q,
• a set of final or accepting F ⊆ Q,
• an alphabet Σ, and
• a transition relation δ ⊆ Q × (Σ ∪ {ε}) × Q.

Note that, as formalized here, there is only one start state but may be
multiple final states, and that the start state may also be a final state.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Acceptance

An FSA is said to accept, match, or recognize a string if there exists a path
from the initial state to some final state, and the labels of the arcs
traversed by that state correspond to the string in question. The set of all
strings so accepted are called the FSA’s language.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Paths

Given two states q, r ∈ Q and a symbol z ∈ Σ ∪ {ε}, (q, z, r) ∈ δ implies
that there is an arc from state q to state r with label z. A path through a
finite acceptor is a pair of

• a state sequence q1, q2, . . . , qn ∈ Qn and a
• a string z1, z2, . . . , zn ∈ (Σ ∪ {ε})n,

subject to the constraint that [i ∈ [1, n] : (qi, zi, qi+1) ∈ δ ; that is, there
exists an arc from qi to qi+1 labeled zi.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Complete paths

A path is said to be complete if

• (s, z1, q1) ∈ δ and
• qn ∈ F.

That is, a complete path must also begin with an arc from the initial state
s to q1 labeled z1 and terminate at a final state. Then, an FSA accepts
string z ∈ (Σ ∪ {ε})∗ if there exists a complete path with string z.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Kleene’s theorem

Kleene’s theorem holds that any regular language is accepted by an FSA,
and any language accepted by an FSA is a regular language. This implies
that because regular languages are closed under closure, concatenation,
and union, so are FSAs.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Reading the state diagrams

• States are indicated by circles.
• The initial state is indicated by a bold circle.
• Final states are indicated by double-struck circles.
• Labeled arrows indicate arcs.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

{aab}

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

{a}+

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

{a}({b} ∪ {c})

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

{ba}{a}+

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

The sheep language

• Q = {0, 1, 2, 3}
• s = 0
• F = {3}
• Σ = {a,b}
• δ = {(0,b, 1), (1,a, 2), (2,a, 3), (3,a, 3)}

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

ε equivalence

Every ε-FSA has an equivalent ε-free (or “e-free”) FSA that can be found
using the epsilon-removal algorithm (Mohri, 2002a).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Demo

http://wellformedness.com/courses/fstp/

https://colab.research.google.com/drive/1ziqO4GWgj8LuOH-sCDi2Xz0Cc0UlTjFr
http://wellformedness.com/courses/fstp/

Finite-state transducers

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Cross-product (redux) and rational relations

Recall that a cross-product (or Cartesian product) of two sets, X × Y, is the
set that contains all pairs (x, y) where x is an element of X and y is an
element of Y.

X × Y = {(x, y) ` x ∈ X ∧ y ∈ Y}

Then, a rational relation is a subset of the cross-product of two regular
languages (e.g., γ ⊆ A × B).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Example: state abbreviations

γ = {(AK,Alaska),
(AL,Alabama,
(AR,Arkansas),
(AZ,Arizona),
(CA,California),
(CO,Colorado),
(CT,Connecticut),
(DE,Delaware),
. . .}

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Interpretation

Regular languages are languages, or sets of strings. Rational relations, in
turn, can either be thought of as

• sets of pair of (input and output) strings, or as
• mappings between input and output strings.

Thus, we might say either that
• (OH,Ohio) ∈ γ, or
• γ[{OH}] = {Ohio}.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Finite-state transducers

Finite-state transducers (FSTs) are generalizations of finite-state acceptors
which correspond to the rational relations. An FST is a 6-tuple defined by

• a finite set of states Q,
• a start or initial state s ∈ Q,
• a set of final or accepting states F ⊆ Q,
• an input alphabet Σ,
• an output alphabet Φ, and
• a transition relation δ ⊆ Q × (Σ ∪ {ε}) × (Φ ∪ {ε}) × Q.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Transduction

An FST is said to transduce ormap from x ∈ (Σ∪ {ε})∗ to y ∈ (Φ∪ {ε})∗

so long as a complete path with input string x and output string y exists.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Paths

Given two states q, r ∈ Q, input symbol xi ∈ Σ ∪ {ε}, and output symbol
yi ∈ Φ ∪ {ε}, (q, xi, yi, r) ∈ δ implies that there is an arc from state q to
state r with input label xi and output label yi. A path through a finite
transducer is a triple consisting of

• a state sequence q1, q2, q3, . . . ∈ Qn and a
• a input string x1, x2, x3, . . . ∈ (Σ ∪ {ε})n,
• a output string y1, y2, y3, . . . ∈ (Φ ∪ {ε})n,

subject to the constraint that [i ∈ [1, n] : (qi, xi+1, yi+1, qi+1) ∈ δ ; that is,
there exists an arc from qi to qi+1 labeled xi+1 : yi+1.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Complete paths

A path is said to be complete if

• (s, x1, y1, q1) ∈ δ and
• qn ∈ F.

A complete path must also begin with an arc from the initial state s to q1
labeled x1 : y1 and terminate at a final state. Then, an FST transduces
input string x ∈ (Σ ∪ {ε})∗ to output string Y ∈ (Φ ∪ {ε})∗ if there
exists a complete path with input string x and output string y.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

FSAs as FSTs

FSAs can be thought of as a special case of FSTs where every transition
has the same input and output label. This is why, in Pynini and friends,
FSAs are instance of a class called Fst.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Why εs

FSTs can map between strings of different lengths, but one must use εs to
“pad out” the shorter string. Thus, whereas every FSA has an equivalent
“e-free” FSA, not all ε-FSTs have an equivalent “e-free” form.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

State abbreviations (fragment)

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Rational operations over FSTs

Rational relations—and thus FSTs—are closed under closure,
concatenation, and union, and the Thompson (1968) constructions for
these operations are also appropriate to FSTs.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Projection

Projection converts a FST to an FSA that is either equal to its domain
(input-projection) or range (output-projection). By convention,
input-projection is indicated by the prefix operator πi and output-project
by πo. Projection can be computed simply by copying all input
(resp. output) labels onto the ouput (resp. input) labels along each arc.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Inversion

Inversion swaps the domain and range of an FST. By convention, it is
indicated by a superscripted −1. Inversion can be computed simply by
swapping input and output labels along each arc.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

({ac} × {b}) ∪ ({df} × {e})

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

πi (({ac} × {b}) ∪ ({df} × {e}))

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

πo (({ac} × {b}) ∪ ({df} × {e}))

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

(({ac} × {b}) ∪ ({df} × {e}))−1

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Intersection

Recall that the regular languages—and thus FSAs—are closed under
intersection. However, FSTs are not closed under intersection.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Composition

Composition is a generalization of intersection and relation chaining. Its
precise interpretation depends on whether the inputs are
languages/FSAs M, N or relations/FSTs µ, ν:

• M ◦ N yields their intersection M ∩ N.
• M ◦ ν yields {(a, b) ` a ∈ M ∧ b ∈ ν[a]}; i.e., it restricts the domain
of ν by intersecting it with M.

• µ ◦ N yields {(a, b) ` b ∈ µ[a] ∧ b ∈ N}; i.e., it restricts the range of
µ by intersecting it with N.

• µ ◦ ν yields {(a, c) ` b ∈ µ[a] ∧ c ∈ ν[b]}; i.e., it chains the output
of µ to the input of ν.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Associativity

Composition is associative and n-ary composition can be implemented by
a sequence of two-way compositions. Note however that for automata,
one bracketing into a sequence of two-way compositions—e.g., A ◦ B ◦ C
factored as the left-associative (A ◦ B) ◦ C versus the right-associative
A ◦ (B ◦ C)—may be far more efficient than other equivalent
associativities.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Demo

http://wellformedness.com/courses/fstp/

https://colab.research.google.com/drive/1Qw39Croq86kufUIVrCbfAFpC8lGNsR-s
http://wellformedness.com/courses/fstp/

Briefly noted:
Weights

Shortest distance
Shortest path

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Rewrites

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Why rewrites?

• Grammarians, since at least Pān
˙
ini (fl. 4th c. BCE), have conceived of

grammars not as sets of permissible strings but rather as a series of
rules which “rewrite” abstract inputs to produce surface forms.

• One particularly influential rule notation is the one popularized by
Chomsky and Halle (1968), henceforth SPE.

• Johnson (1972) proves this notation, with some sensible restrictions,
is equivalent to the rational relations and thus to finite transducers.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Formalism

Let Σ be the set of symbols over which the rule will operate.

• For phonological rules, Σ might consist of all phonemes and their
allophones in a given language.

• For grapheme-to-phoneme rules, it would contain both graphemes
and phonemes.

Let s, t, l, r ∈ Σ∗. Then, the following is a possible rewrite rule.

s→ t / l r

where s→ t is the structural change and l and r as the environment. By
convention, l and/or r can be omitted when they are null (i.e., are ε).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Interpretation

The above rule can be read as “s goes to t between l and r”, and specifies
a rational relation with domain and range Σ∗ such that all instances of lsr
are replaced with ltr, with all other strings in Σ∗ passed through.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Example

Let Σ = {a,b,c} and consider the following rule.

b→ a / b b

bbba → baba
abbbabbbc → ababababc

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Input: cbbca

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Output: cbbca

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Input: abbbba

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Output: ???

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Directionality

However, application is ambiguous with respect to certain input strings.

a. simultaneous application abaaba
b. left-to-right or right-linear application ababba
c. right-to-left or left-linear application abbaba

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Directional application

In SPE it is assumed that that all rules apply simultaneously (op. cit.,
343f.). However, Johnson (1972) adduces a number of phonological
examples where directional application—either left-to-right or
right-to-left—is required. However, note that directionality has no
discernable effect on many rules and can often be ignored.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Boundary symbols

Let ^, $ < Σ be boundary symbols disjoint from Σ. Now let ^, the
beginning-of-string symbol, to optionally appear as the leftmost symbol
in l, and permit $, the end-of-string-symbol, to optionally appear as the
rightmost symbol in r. These boundary symbols are not permitted to
appear elsewhere in l or r, or anywhere within the structural description
and change.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Example

Let Σ = {a,b,c} and consider the following rule.

b→ a / ^ b b

bbba → baba
abbbc → abbbc

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Generalization

We can generalize the elements of rules from single strings to languages
and relations. Then, a rewrite rule is specified by a five-tuple consisting of

• an alphabet Σ,
• a structural change τ ⊆ Σ∗ × Σ∗,
• a left environment L ⊆ {^}?Σ∗,
• a right environment R ⊆ Σ∗{$}?, and
• a directionality (one of: “simultaneous”, “left-to-right”, or
“right-to-left”).

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Briefly noted:
Features

Abbreviatory devices
Constraint-based formalisms

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Rule compilation

Rules which apply at the end or beginning of a string are generally trivial
to express as a finite transducer. For example, the following rules
prepend a prefix p or append a suffix s, respectively.

∅ → {p} / ^ Σ∗

∅ → {s} / Σ∗ $

Such rules, respectively, correspond to the rational relations:

({ε} × {p}) Σ∗

Σ∗ ({ε} × {s})

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Challenges

Greater difficulties arise from the possibility of

• multiple sites for application and
• multiple overlapping contexts for application.

It thus proved challenging to develop a general-purpose algorithm for
compilation, and was not widely-known until the 1990s (e.g., Kaplan and
Kay, 1994; Karttunen, 1995). The following is a generalization put forth by
Mohri and Sproat (1996), which builds a rewrite rule from a cascade of
five transducers, each a simpler rational relation.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

The algorithm I

If X is a language, let X̄ denote its complement, the language consisting of
all strings not in X. Then, let <1, <2, >< Σ be marker symbols disjoint
from the alphabet Σ. L and R are acceptors defining the left and right
contexts, respectively. The constituent transducers are as follows:

• ρ inserts the > marker before all substrings matching R:
Σ∗R→ Σ∗ > R.

• φ inserts markers <1 and <2 before all substrings matching
πi(τ) >: (Σ ∪ {>})∗πi(τ)→ (Σ ∪ {>})∗{<1, <2}πi(τ). Note that
this introduces two paths, one with <1 and one with <2, which will
ultimately correspond, respectively, to the cases where L does/does
not occur to the left (see steps 4, 5 below).

• γ applies the structural change τ anywhere πi(τ), the input
projection of τ , is preceded by <1 and followed by >. It
simultaneously deletes the > marker everywhere.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

The algorithm II

• λ1 admits only those strings in which L is followed by the <1 marker
and deletes all <1 markers satisfying this condition: Σ∗L <1→ Σ∗L.

• λ2 admits only those strings in which all <2 markers are not
preceded by L and deletes all <2 markers satisfying this condition:
Σ∗L̄ <2→ Σ∗L̄

Then, the final context-dependent rewrite rule transducer is given by

T = ρ ◦ φ ◦ γ ◦ λ1 ◦ λ2

Slight variants are used for right-to-left and simultaneous transduction.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Schematic of γ

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Briefly noted:
Efficiency considerations

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Demo

http://wellformedness.com/courses/fstp/

https://colab.research.google.com/drive/1pE1Q3rR_EOnqBUm-xMMjrPqPpjQjiPcx
http://wellformedness.com/courses/fstp/

Appendix A: further reading

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Further reading

• Mohri, 2009: reviews major WFST algorithms
• Roark and Sproat, 2007, §1: introduces WFST weights
• Mohri, 2002b: introduces shortest-distance and shortest-path
algorithms

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

More information

openfst.org

opengrm.org

baumwelch.opengrm.org

ngram.opengrm.org

pynini.opengrm.org

thrax.opengrm.org

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Appendix B: Pynini installation

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Pynini installation

Pynini can be run on most modern UNIX-like operation systems, including
MacOS, Linux, or on Windows, using the Windows Subsystem for Linux
(WSL). For most users, the simplest option is to install the module and its
dependencies using Anaconda, or to use it via Colab.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Anaconda installation

• Install either Anaconda or Miniconda for your platform. (Note that if
you are planning on using Pynini on Windows, you should download
and run the Linux installer and run it from the WSL terminal.)

• At the command line, issue the following command:

conda install -c conda-forge pynini

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Colab installation

If you wish to just use Pynini in a Colab notebook, add the following to
the top of your notebook:

!pip install pynini
%load_ext wurlitzer

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

Appendix C: OpenFst & OpenGrm

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

OpenFst (Allauzen et al., 2007)

OpenFst is a open-source C++17 library for weighted finite state
transducers developed at Google.

• One serialization format (.fst) is shared across all OpenFst and
OpenGrm libraries.

• FSTs can be compacted; e.g., unweighted string acceptors can be
stored as integer arrays.

• Collections of FSTs can be stored in FST archives (.far), a
shardable key-value store.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

OpenFst design

There are (at least) four layers to OpenFst:

• a C++ template/header library in <fst/*.h>
• a C++ “scripting” library in <fst/script/*.{h,cc}>
• CLI programs in /usr/local/bin/*
• a Python extension module pywrapfst

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

OpenGrm

• Baum-Welch (Gorman et al., 2021): CLI tools and libraries for
performing expectation maximization on WFSTs

• NGram (Roark et al., 2012): CLI tools and libraries for building
conventional n-gram language models

• Pynini (Gorman, 2016; Gorman and Sproat, 2021): Python extension
module for WFST grammar development

• SFst (Allauzen and Riley, 2018): CLI tools and libraries for building
stochastic FSTs

• Thrax (Roark et al., 2012): DSL-based compiler for WFST grammar
development

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References I

C. Allauzen and M. Riley. Algorithms for weighted finite automata with
failure transitions. In Proceedings of the 23rd International Conference
on Implementation and Application of Automata, pages 46–58, 2018.

C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri. OpenFst: a
general and efficient weighted finite-state transducer library. In
Proceedings of the 12th International Conference on Implementation
and Application of Automata, pages 11–23, 2007.

N. Chomsky and M. Halle. Sound Pattern of English. Harper & Row, 1968.
N. Chomsky and G. A. Miller. Introduction to the formal analysis of natural
languages. In R. D. Luce, R. R. Bush, and E. Galanter, editors, Handbook
of Mathematical Psychology, pages 269–321. Wiley, 1963.

E. M. Gold. Language identification in the limit. Information and Control,
10(5):447–474, 1967.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References II
K. Gorman. Pynini: a Python library for weighted finite-state grammar
compilation. In ACL Workshop on Statistical NLP and Weighted
Automata, pages 75–80, 2016.

K. Gorman and R. Sproat. Minimally supervised number normalization.
Transactions of the Association for Computational Linguistics, 4:
507–519, 2016.

K. Gorman and R. Sproat. Finite-State Text Processing. Morgan & Claypool,
2021.

K. Gorman, C. Kirov, B. Roark, and R. Sproat. Structured abbreviation
expansion in context. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 995–1005, 2021.

C. D. Johnson. Formal Aspects of Phonological Description. Mouton, 1972.
R. Kaplan and M. Kay. Regular models of phonological rule systems.
Computational Linguistics, 20(3):331–378, 1994.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References III
L. Karttunen. The replace operator. In 33rd Annual Meeting of the
Association for Computational Linguistics, pages 16–23, 1995.

S. C. Kleene. Representations of events in nerve nets and finite automata.
In C. E. Shannon and J. McCarthy, editors, Automata Studies, pages 3–42.
Princeton University Press, 1956.

C. D. Manning. Last words: computational linguistics and deep learning.
Computational Linguistics, 41(4):701–707, 2015.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5(4):115–133, 1943.

M. Mohri. Generic epsilon-removal and input epsilon-normalization
algorithms for weighted transducers. International Journal of Computer
Science, 13(1):129–143, 2002a.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References IV
M. Mohri. Semiring frameworks and algorithms for shortest-distance
problems. Journal of Automata, Languages and Combinatorics, 7(3):
321–350, 2002b.

M. Mohri. Weighted automata algorithms. In M. Droste, W. Kuich, and
H. Vogler, editors, Handbook of Weighted Automata, pages 213–254.
Springer, 2009.

M. Mohri and R. Sproat. An efficient compiler for weighted rewrite rules.
In 34th Annual Meeting of the Association for Computational
Linguistics, pages 231–238, 1996.

A. H. Ng, K. Gorman, and R. Sproat. Minimally supervised
written-to-spoken text normalization. In IEEE Workshop on Automatic
Speech Recognition and Understanding, pages 665–670, 2017.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References V
S. Ritchie, R. Sproat, K. Gorman, D. van Esch, C. Schallhart, N. Bampounis,
B. Brard, J. F. Mortensen, M. Holt, and E. Mahon. Unified verbalization
for speech recognition & synthesis across languages. In Proceedings of
INTERSPEECH, pages 3530–3534, 2019.

B. Roark and R. Sproat. Computational Approaches to Morphology and
Syntax. Cambridge University Press, 2007.

B. Roark, R. Sproat, C. Allauzen, M. Riley, J. Sorensen, and T. Tai. The
OpenGrm open-source finite-state grammar software libraries. In
Proceedings of the ACL 2012 System Demonstrations, pages 61–66, 2012.

K. Thompson. Programming techniques: regular expression search
algorithm. Communications of the ACM, 11(6):419–422, 1968.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

References VI
K. Vijay-Shanker, D. J. Weir, and A. K. Joshi. Characterizing structural
descriptions produced by various grammatical formalisms. In 25th
Annual Meeting of the Association for Computational Linguistics, pages
104–111, 1987.

H. Zhang, R. Sproat, A. H. Ng, F. Stahlberg, X. Peng, K. Gorman, and B. Roark.
Neural models of text normalization for speech applications.
Computational Linguistics, 45(2):293–337, 2019.

http://wellformedness.com/courses/fstp/

http://wellformedness.com/courses/fstp/

