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Outline

e Some questions from earlier
e Multiple independent variables and (multi)collinearity
e (For home consumption): the likelihood-ratio test.



Questions



The z-statistic in the Kendall T, test

| looked this up...

The test statistic 1, lacks an easily-characterized distribution (there is no pkendall
or gkendall). The standard way to compute the p-value for t, then is to convert it to
a z-score.

R reports both 1, and the z-score, though you don't need to report z since R does it
for you on the way to computing the p-value.


https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient#Significance_tests
https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient#Significance_tests

The meaning of ~ (1/)

In mathematical notation, ~ ("tilde") is sometimes read as:

e 'is simulated by",
e 'is a function of", or
e ‘is distributed according to".

For instance,

X ~ Bin(p, n)

can be read as "x is binomially distributed (with n draws and success probability p).



The meaning of ~ (2/)

R expands this a little bit to use this to write (first-class) objects it calls formulae,
which can be passed to certain statistical functions (e.g., t . test and
wilcox.test) and linear model functions like 1m.

On the left-hand side of the ~, we place the dependent variable; on the right-hand
side, we place the independent variables, separated with +:

y ~ X T+ Z

R interprets this (assuming X and Z are continuous) as Y =B, + B, X + B,Z + €.

R automatically handles the intercept, dummy coding, etc.



The meaning of ~ (3/)

It's important to understand: ~ is part of an expression in the R language: it doesn't
have a numerical value. R interprets it depending on the context in which it is used.

Later on we'll see additional formulae syntax for

e disabling the intercept term,

e denoting interactions of independent variables,

e applying arithmetic operations directly to variables in the definition of the
formula, and

e denoting random effects.



t-test example sans tilde

> x <- with(iris, Sepal.Width[Species == "versicolor"])
> y <- with(iris, Sepal.Width[Species == "virginica"l])
> t.test (x, V)

Welch Two Sample t-test

data: x and y
t = -3.2058, df = 97.927, p-value = 0.001819



t-test example a tilde

> 1ris2 <- droplevels (

+ subset (iris, Species %in% c("versicolor",

> t.test (Sepal.Width ~ Species, data = 1ris2)

Welch Two Sample t-test

data: Sepal.Width by Species
t = -3.2058, df = 97.927, p-value = 0.001819

"virginica")))



Tilde gotchas
While we often refer to the samples in a two-sample t-test or Wilcoxon test as x and

y, they are both samples of the dependent variable; the independent variable is group
membership. So there is no obvious connection between x and y in expressions like:

Im(y ~ x)

and

t.test (x, V)
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Multiple regression



Linear regression

As mentioned, linear regression can be performed with multiple independent
variables. This assumes

e continuity: independent variables must be expressable as continuous values,

e variance: independent variables must have non-zero variance,

e linearity: the dependent variable has a linear relationship between each
independent variable (or is non-significant),

e multivariate normality: errors are normally distributed (or CLT),

e homoscedasticity: equal variance and standard deviation across IVs, and

e no multicollinearity (more on that in a second),
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Example (1/)
We'll try to predict one of the iris measurements (across all three species) using the
other three.

Arbitrarily | chose Petal.Length as the DV and the remaining three measures as
the IVs.

13



wbua |ejad

25

20

1.5

1.0

0.5

Petal Width

14



Petal Length

Sepal Length

8.0

15



3.0

Jybus jejed

4.0

35

25

20

Sepal Width

16



> palrs( ~ Petal.Length + Petal.Width + Sepal.Length +
Sepal.Width, data = iris)
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> r <- Im(Petal.Length ~ Petal.Width +

+ Sepal.Width + Sepal.Length, data

> summary (r)

Coefficients:

(Intercept)
Petal.Width
Sepal.Length
Sepal.Width

Estimate Std.

-0.
1.
0.

-0.

26271
44679
712914
64601

o O o O

= iris)

Error t value Pr(>|t])

.29741
.06761
.05832
.06850

-0
21
12
-9

.883
.399
.502
.431

0.379
<2e-16
<2e-16
<2e-16
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> r <- Im(Petal.Length ~ I(scale(Petal.Width)) +
+ I (scale(Sepal.Width)) +
+ I (scale(Sepal.Length)), data = iris)
> summary (r)
Coefficients:

Estimate Std. Error t value Pr(>|t)
(Intercept) 3.75800 .02004 144.302 <2e-16

I (scale(Petal.Width)) 1.10280
I (scale(Sepal.Length)) 0.60377
I (scale(Sepal.Width)) -0.28158

.05154 21.399 <Ze-16
.04829 12.502 <Ze-16
.02986 -9.431 <Ze-16

o O o O



Variable entry

Three major styles:

e Hierarchical:. experimenter uses hypotheses about the universe to build the
regression and adds variables to model in order of importance

e Forced entry: all variables are added simultaneously

e Stepwise: experimenter adds (or removes) variables based on their semi-partial
correlation with the outcome variable
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Forced entry

All variables are added simultaneously to the model.

But if a very large number of variables are added at once, overfitting, in which
extraneous independent variables are used to model error/noise, can occur.

One rule of thumb for categorical variables: "at least 15-20 cases per level".
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Stepwise entry

In step-up entry, variables are entered one at a time, with some model criterion used
to determine whether they remain or not. Alternatively, one can perform step-down
entry, in which we begin with forced entry and remove variables according to a
(negative) model criterion.

These are both implemented by the R function step.
This relies on experimenter-chosen criteria, which

e may not be appropriate,
e may not be interpretable, and which
e may not be sensitive to very small differences in semi-partial correlation.
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Accounting for variance

Recall that r? can be understood as the percentage of the variance shared by X and Y.
What if there are two predictors X, and X,?

e If X, and X, are uncorrelated, then it is the sum their individual r*s: r* = r.? +r,.
e But otherwise, these terms must be adjusted.
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X, and X, are uncorrelated (i.e.
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r< = B1r1 + Bzr2

where B is an adjustment.



Partial and semi-partial correlation

Partial correlation measures the relationship between two variables, controlling for
the effect that a third variable has on them both.

Semi-partial correlation measures the relationship between two variables controlling
for the effect that a third variable has on only one of the others.

In the context of regression, semi-partial correlation measures

e the relationship between a predictor and the outcome, controlling for the
relationship between that predictor and any others already in the model, or
e the unique contribution of a predictor to explaining the variance of the outcome.

27






r2-r2r

12

12

r
2

ry 2= (r, +rr.)/YI(1-r,?-r %)



Residualization

"Controlling for X," is the same as:

e ‘removing the effect of X",
e "holding X, constant” or

e residualization, using X, to predict X_ and extracting the residual, the portion of
X, uncorrelated with X.,.
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(Multi)collinearity

Multicollinearity exists when two or more predictors are highly correlated as
measured by Pearson's r. Multicollinearity

e violates the statistical assumptions we use for hypothesis testing, and
e when extreme, can cause the parameter estimation technique to fail.

NB: The multi- bit in multicollinearity doesn't really denote anything in particular, other
than "non-trivial collinearity between two or more independent variables.
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Other ways of measuring multicollinearity

Variable inflation factor (VIF; Davis et al. 1986; vi £ in the car package): "the
inflation in size of the confidence ellipse or ellipsoid for the coefficients of the
term in comparison with what would be obtained for orthogonal data”; e.g., 1.6
would mean that the confidence intervals are 1.6x larger than they would be if

the data had no multicollinearity.
K ("kappa"; Belsey et al. 1980): k > 10 is considered to indicate non-trivial

multicollinearity.
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Residualization (1/)

Residualization addresses multicollinearity by creating new orthogonal independent
variables. We create said variables by fitting simple linear models and extracting the
residuals. E.g., if a and b are two independent variables we might do:

> b.res <- residuals(lm(b ~ a))
> stopifnot(cor(a, b.res) == 0)
> r <- Im(y ~ a + b.res)

Note that one independent variable acts as a baseline.
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Residualization (2/)

When there are two or more multicollinear variables, this has to be performed
iteratively. Suppose we have three collinear independent variables a, b and c:

b.res <- residuals(lm(b ~ a)) # As before.
stopifnot (cor(a, b.res) == 0) # As before.
c.res <- residuals(lm(c ~ a + b.res))

stopifnot (cor(a, c.res) == 0)
stopifnot (cor(b.res, c.res) == 0)

vV V V V V V

r <- Im(y ~ a + b.res + c.res)
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Questions? Please take
them to email, or Slack.



