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Outline

● Some questions from earlier
● Multiple independent variables and (multi)collinearity
● (For home consumption): the likelihood-ratio test.
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Questions
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The z-statistic in the Kendall τb test

I looked this up…

The test statistic τb lacks an easily-characterized distribution (there is no pkendall 
or qkendall). The standard way to compute the p-value for τb then is to convert it to 
a z-score.

R reports both τb and the z-score, though you don't need to report z since R does it 
for you on the way to computing the p-value.
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https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient#Significance_tests
https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient#Significance_tests


The meaning of ~ (1/)

In mathematical notation, ~ ("tilde") is sometimes read as:

● "is simulated by",
● "is a function of", or
● "is distributed according to".

For instance,

X ~ Bin(p, n)
can be read as "x is binomially distributed (with n draws and success probability p).
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The meaning of ~ (2/)

R expands this a little bit to use this to write (first-class) objects it calls formulae, 
which can be passed to certain statistical functions (e.g., t.test and 
wilcox.test) and linear model functions like lm.

On the left-hand side of the ~, we place the dependent variable; on the right-hand 
side, we place the independent variables, separated with +:

y ~ x + z

R interprets this (assuming X and Z are continuous) as Y = β0 + β1X + β2Z + ε.

R automatically handles the intercept, dummy coding, etc.
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The meaning of ~ (3/)

It's important to understand: ~ is part of an expression in the R language: it doesn't 
have a numerical value. R interprets it depending on the context in which it is used.

Later on we'll see additional formulae syntax for

● disabling the intercept term,
● denoting interactions of independent variables,
● applying arithmetic operations directly to variables in the definition of the 

formula, and
● denoting random effects.
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t-test example sans tilde

> x <- with(iris, Sepal.Width[Species == "versicolor"])
> y <- with(iris, Sepal.Width[Species == "virginica"])
> t.test(x, y)

Welch Two Sample t-test

data:  x and y
t = -3.2058, df = 97.927, p-value = 0.001819
...
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t-test example à tilde

> iris2 <- droplevels(
+     subset(iris, Species %in% c("versicolor", "virginica")))
> t.test(Sepal.Width ~ Species, data = iris2)

        Welch Two Sample t-test

data:  Sepal.Width by Species
t = -3.2058, df = 97.927, p-value = 0.001819
...
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Tilde gotchas

While we often refer to the samples in a two-sample t-test or Wilcoxon test as x and 
y, they are both samples of the dependent variable; the independent variable is group 
membership. So there is no obvious connection between x and y in expressions like:

lm(y ~ x)

and

t.test(x, y)
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Multiple regression
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Linear regression

As mentioned, linear regression can be performed with multiple independent 
variables. This assumes

● continuity: independent variables must be expressable as continuous values,
● variance: independent variables must have non-zero variance,
● linearity: the dependent variable has a linear relationship between each 

independent variable (or is non-significant),
● multivariate normality: errors are normally distributed (or CLT),
● homoscedasticity: equal variance and standard deviation across IVs, and
● no multicollinearity (more on that in a second),
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Example (1/)

We'll try to predict one of the iris measurements (across all three species) using the 
other three.

Arbitrarily I chose Petal.Length as the DV and the remaining three measures as 
the IVs.
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> pairs( ~ Petal.Length + Petal.Width + Sepal.Length + 
Sepal.Width, data = iris)
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> r <- lm(Petal.Length ~ Petal.Width +
+         Sepal.Width + Sepal.Length, data = iris)
> summary(r)

...
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -0.26271    0.29741  -0.883    0.379    
Petal.Width   1.44679    0.06761  21.399   <2e-16
Sepal.Length  0.72914    0.05832  12.502   <2e-16
Sepal.Width  -0.64601    0.06850  -9.431   <2e-16
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> r <- lm(Petal.Length ~ I(scale(Petal.Width)) +
+                         I(scale(Sepal.Width)) +
+                         I(scale(Sepal.Length)), data = iris)
> summary(r)

...
Coefficients:
                       Estimate Std. Error t value  Pr(>|t)   
(Intercept)             3.75800    0.02604 144.302   <2e-16 
I(scale(Petal.Width))   1.10280    0.05154  21.399   <2e-16
I(scale(Sepal.Length))  0.60377    0.04829  12.502   <2e-16
I(scale(Sepal.Width))  -0.28158    0.02986  -9.431   <2e-16
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Three major styles:

● Hierarchical: experimenter uses hypotheses about the universe to build the 
regression and adds variables to model in order of importance

● Forced entry: all variables are added simultaneously
● Stepwise: experimenter adds (or removes) variables based on their semi-partial 

correlation with the outcome variable

Variable entry
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All variables are added simultaneously to the model.

But if a very large number of variables are added at once, overfitting, in which 
extraneous independent variables are used to model error/noise, can occur.

One rule of thumb for categorical variables: "at least 15-20 cases per level".

Forced entry
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In step-up entry, variables are entered one at a time, with some model criterion used 
to determine whether they remain or not. Alternatively, one can perform step-down 
entry, in which we begin with forced entry and remove variables according to a 
(negative) model criterion.

These are both implemented by the R function step.

This relies on experimenter-chosen criteria, which

● may not be appropriate,
● may not be interpretable, and which
● may not be sensitive to very small differences in semi-partial correlation.

Stepwise entry
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Recall that r2 can be understood as the percentage of the variance shared by X and Y.

What if there are two predictors X1 and X2?

● If X1 and X2 are uncorrelated, then it is the sum their individual r2s: r2 = r1
2 + r2

2.
● But otherwise, these terms must be adjusted.

Accounting for variance
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X1 and X2 are uncorrelated (i.e., r12= 0)
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r122

X1 and X2 are correlated (i.e., r12≠ 0)

r2 = B1r1 + B2r2

where B is an adjustment.



Partial correlation measures the relationship between two variables, controlling for 
the effect that a third variable has on them both.

Semi-partial correlation measures the relationship between two variables controlling 
for the effect that a third variable has on only one of the others.

In the context of regression, semi-partial correlation measures

● the relationship between a predictor and the outcome, controlling for the 
relationship between that predictor and any others already in the model, or

● the unique contribution of a predictor to explaining the variance of the outcome.

Partial and semi-partial correlation
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"Controlling for X2" is the same as:

● "removing the effect of X2",
● "holding X2 constant" or
● residualization, using X2 to predict X1 and extracting the residual, the portion of 

X1 uncorrelated with X2.

Residualization
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Multicollinearity exists when two or more predictors are highly correlated as 
measured by Pearson's r. Multicollinearity

● violates the statistical assumptions we use for hypothesis testing, and
● when extreme, can cause the parameter estimation technique to fail.

NB: The multi- bit in multicollinearity doesn't really denote anything in particular, other 
than "non-trivial collinearity between two or more independent variables."

(Multi)collinearity
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● Variable inflation factor (VIF; Davis et al. 1986; vif in the car package): "the 
inflation in size of the confidence ellipse or ellipsoid for the coefficients of the 
term in comparison with what would be obtained for orthogonal data"; e.g., 1.6 
would mean that the confidence intervals are 1.6x larger than they would be if 
the data had no multicollinearity.

● κ ("kappa"; Belsey et al. 1980): κ > 10 is considered to indicate non-trivial 
multicollinearity.

Other ways of measuring multicollinearity
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Residualization addresses multicollinearity by creating new orthogonal independent 
variables. We create said variables by fitting simple linear models and extracting the 
residuals. E.g., if a and b are two independent variables we might do:

> b.res <- residuals(lm(b ~ a))
> stopifnot(cor(a, b.res) == 0)
> r <- lm(y ~ a + b.res)

Note that one independent variable acts as a baseline. 

Residualization (1/)
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When there are two or more multicollinear variables, this has to be performed 
iteratively. Suppose we have three collinear independent variables a, b and c:

> b.res <- residuals(lm(b ~ a))  # As before.
> stopifnot(cor(a, b.res) == 0)  # As before.
> c.res <- residuals(lm(c ~ a + b.res))
> stopifnot(cor(a, c.res) == 0)
> stopifnot(cor(b.res, c.res) == 0)
> r <- lm(y ~ a + b.res + c.res)

Residualization (2/)
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Questions? Please take 
them to email, or Slack.
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