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1 Introduction
Categorical independent variables—in particular thosewithmore than two levels—pose particular
challenges for hypothesis testing. Under standard dummy-coding schemes, fitting a regression
with an categorical independent variable of n “levels” produces n − 1 coefficients (i.e., βs) and
n − 1 standard errors. Each of these coefficients has a t-distribution, parameterized by the asso-
ciated degrees of freedom and standard error, but the null hypothesis—that the population-level
coefficient is zero—is rarely one we’re interested in, and its precise interpretation depends on
how the factor has been coded:

• In treatment coding (the default in R), if the null hypothesis is true then the relevant level
has the same mean value of the dependent variable as the reference level.

• In sum coding, if the null hypothesis true then the relevant level is not significantly different
from the overall category mean of the dependent variable.

While these are not trivial, one is usually interested in different questions, such as:

• Is the categorical independent variable overall correlated with the dependent variable? I.e.,
are changes in the value of the IV associated with changes in the value of the DV?

• Which of the levels of the categorical independent variable are significantly different from
any other level? I.e., are different levels of the IV associated with changes in the value of
the DV?

We will refer to the first as tests for effects of group and the second as post-hoc tests.
As a running example, we will use (simulated) data based on Presmanes Hill et al. (2015). This

study examined verbal and non-verbal memory in three groups of children between the ages of 5
and 8: children with autism spectrum disorder (ASD) and no language impairment (ALN; n = 20);
children with ASD and language impairment (ALI; n = 22), and group of children with specific
language impairment (SLI; n = 18). The dependent variable here is CLS, the core language score
on the CELF (Clinical Evaluation of Language Fundamentals), a widely used clinical instrument.
Sum coding is used for the independent variable DX (“diagnosis”).

> r <- lm(CLS ~ DX, data = d)
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2 Tests for effect of group
As expected, the model includes three coefficients: one for the intercept and two for the dummy-
coded IV:

> summary(r)

Call:
lm(formula = CELF.CLS ~ DX, data = d)

Residuals:
Min 1Q Median 3Q Max

-28.324 -6.510 1.358 6.929 30.207

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 83.531 1.526 54.726 < 2e-16 ***
DX1 -15.574 2.106 -7.397 6.94e-10 ***
DX2 23.445 2.155 10.879 1.56e-15 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 11.78 on 57 degrees of freedom
Multiple R-squared: 0.6879, Adjusted R-squared: 0.6769
F-statistic: 62.8 on 2 and 57 DF, p-value: 3.883e-15

Both of the dummy-coding coefficients are significant, but is diagnosis correlated with the depen-
dent variable? One way to frame this as a null hypothesis test is the likelihood ratio test, which
we define below.

The likelihood L of a model is simply the probability the model assigns to some data. For
instance, if the model assumes that a coin is fair, and the data consists of two heads, the likelihood
is .52 = .25, assuming the coin flips are independent. For large data sets, the likelihood is often
vanishingly small, so we instead work with log-likelihood, denoted by ℓ; Suppose we have two
statistical models, one defined by the parameters/coefficients θ and another by a subset, θ0. In this
configuration we say that θ nestsθ0. It must be the case, then, that the (log-)likelihood of θ with
respect to some data is greater or equal to the (log-)likehood of θ0, because θ is more expressive
than θ0. Thus:

L(θ0)

L(θ)
∈ [0, 1]

That is, the ratio the two likelihoods is between 0 and 1, inclusive. Or, equivalently:

ℓ(θ0)− ℓ(θ) ≤ 0

That is, the difference in log-likelihoods is less than or equal to zero. In the likelihood-ratio test
the null hypothesis is that the difference in likelihoods is exactly zero, and the (one-sided) alter-
native hypothesis is that it is less than zero. Let us define a test statistic LR = −2 [ℓ(θ0)− ℓ(θ)].
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Then, according to a well-known theorem, LR has an asymptotic χ2 distribution under the null
hypothesis; the degrees of freedom are given by |θ| − |θ0|, the difference between the number of
parameters in θ and in θ0. When one uses this test to test for the significance of a categorical inde-
pendent variable in a regression, θ is the full model; θ0 is the model with that categorical variable
removed; and the degrees of freedom are n− 1. In R, one can compute this test statistic manually
by fitting the θ0 model, a model without the DX independent variable, and then computing the
test statistic and associated p-value, as follows:

> r0 <- lm(CELF.CLS ~ 1, data = d)
> ell.r0 <- logLik(r0)[1]
> ell.r <- logLik(r)[1]
> LR <- -2 * (ell.r0 - ell.r)
> p <- 1 - pchisq(LR, df = nlevels(d$DX) - 1)
> c("LR" = LR, "p" = p)

LR p
6.985713e+01 6.661338e-16

R also provide an automatic method to apply this test, drop1, though it does not report the test
statistic itself:1

> drop1(r, test = "Chisq")

Single term deletions

Model:
CELF.CLS ~ DX

Df Sum of Sq RSS AIC Pr(>Chi)
<none> 7914.4 298.93
DX 2 17440 25354.9 364.78 6.772e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

One might report this as follows:

There was a significant effect of diagnostic group on CELF CLS (χ2(2) = 69.857,
p < .001).

The only major limitation of this test is that it is asymptotically valid and thus inappropriate for
very small samples. Also note that the test is not valid if θ does not nest θ0 as defined above.

3 Post-hoc tests
Post-hoc tests allow us to test the null hypothesis that any two pairs of levels from the same
categorical variable are associatedwith the same value of the IV. Since there can be a huge number

1We also observe a small difference in the estimated p-value.
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of such pairs when a categorical variable hasmany levels—and there can bemany such categorical
variables—it is necessary to apply a correction for multiple comparison. For linear models, this
is handled using the Tukey HSD (“Honestly Significant Difference”) test. In lecture, I gave an
example of using the built-in TukeyHSD function; here, I instead use functions from the multcomp
package, which produces easier-to-read output.2

> pairs <- glht(r, linfct = mcp(DX = "Tukey"))
> summary(pairs)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = CELF.CLS ~ DX, data = d)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

ALN - ALI == 0 39.019 3.641 10.718 <1e-04 ***
SLI - ALI == 0 7.704 3.745 2.057 0.108
SLI - ALN == 0 -31.315 3.828 -8.180 <1e-04 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)

Here, the Estimate column gives the difference between the mean DV for the two levels; the re-
maining columns report the associated standard error, the t-statistic, and the p-value (adjusted for
multiple comparisons). There are significant differences (at α = .05) between ALN and ALI, and
between ALN and SLI; in both, the ALN group has a higher mean value for the CELF CLS. (This
is unsurprisingly because CELF CLS was used to diagnose children for language impairment.)
Informally, one might write this as “[SLI = ALI] < ALN”.
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2This package does not ship with R; to install it, execute install.packages("multcomp") in R.
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