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What we've seen so far (1/)

In linear regression, we have an interval dependent variable (Y) which we suspect 
may be modulated by independent variables X. We wish to

● predict the value Y will take on given a particular X, and/or
● infer whether changes in X are really associated with Y.

In other words, we are trying to infer a correlation between X and Y: much more 
complex and assumption-laden methods are required to infer causation (and the 
direction of the causal arrow).
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What we've seen so far (2/)

X, the independent variable can be:

● Binomial (experimental condition vs. control condition, intervention vs. no 
intervention, etc.)
○ this is the same as computing the point-biserial correlation, and
○ this in turn is the same as doing Student's ("equal variance") two-sample t-test.

● Interval (height, age, hours of instruction, etc.)
○ this is the same as computing Pearson's r.
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Outline

Today we'll see a few extensions:

● Multiple independent variables in a single analysis
○ which demand centering and standardization, and
○ which require tests and corrections for (multi)collinearity.

● Categorical variables with more than two levels
○ which require novel coding schemes, and
○ which require post hoc tests.
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Quick review
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The equation for the ith point

yi = β0 + β1xi + εi
where

● yi is a ith value of the DV,
● β0 is the y-intercept of the line,
● β1 is the slope of the line,
● xi is the ith value of the IV, and
● εi is the deviance/error of the ith observation.
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The equation in general

Y = β0 + β1X + ε
where

● Y is an n-length vector of DV values,
● β0 is a scalar, the y-intercept of the line,
● β1 is a scalar, the slope of the line,
● X is an n-length vector of IV values, and
● ε is an n-length vector of deviances.
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Centering and 
standardizing
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Interpretation is hard

Given:

Y = β0 + β1X + ε
What is a "typical" value for Y? E.g.:

● what is Y̅? or equivalently,
● what is ŷ when X = X̄?

A method called centering allows us to quickly answer both these questions as a 
side-effect of fitting the linear model.
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Centering (1/)

What if we rewrote Y = β0 + β1X + ε as

Y = β0 + β1X' + ε
where

X' = X − X̄?
Then β0 = Y̅. (That is, the intercept gives the sample mean of Y.)
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Centering (2/)

This is actually easy to do in R:

> x.prime <- scale(x, center = TRUE, scale = FALSE)

Or (and I prefer this), just:

> x.prime <- x - mean(x)

11



> n <- 25
> y <- runif(n, 0, 100)
> y.bar <- mean(y)
> y.bar
[1] 55.75366
> x <- rnorm(n, 5, 3)
> x.bar <- mean(x)
> x.bar
[1] 5.326931
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> lm(y ~ x)

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept)            x  
     67.883       -2.277  
> y.hat <- 67.883 + -2.277 * x.bar
[1] 55.75358
> all.equal(y.hat, y.bar)
[1] "Mean relative difference: 1.462302e-06"
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> x.prime <- x - x.bar
> lm(y ~ x.prime)

Call:
lm(formula = y ~ x.prime)

Coefficients:
(Intercept)      x.prime  
     55.754       -2.277

NB:

● β0 = Y̅, and
● β1 is unchanged.
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β1 in  Y = β0 + β1X is a measure of units Y changed per unit of X.

Therefore βs from different scales will have different magnitudes (e.g., β1 when X is 
kilometers vs. β1 is in miles) and can't easily be compared.

Consider the following example from the cars data set (circa 1920s).

NB: X is speed (in miles/hour); Y is stopping distance (in feet).

Interpretation is hard (2/)
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> speed.prime <- with(cars, speed - mean(speed))
> range(speed.prime)
[1] -11.4   9.6
> lm(dist ~ speed.prime, data = cars)

Call:
lm(formula = dist ~ speed.prime, data = cars)

Coefficients:
(Intercept)  speed.prime  
     42.980        3.932
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> speed.km <- 1.61 * cars$speed
> speed.km.prime <- speed.km - mean(speed.km)
> range(speed.km.prime)
[1] -18.354  15.456
> lm(dist ~ speed.prime.km, data = cars)

Call:
lm(formula = dist ~ speed.prime.km, data = cars)

Coefficients:
(Intercept)  speed.prime.km  
    42.980            2.442  
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Standardization

What if we rewrote Y = β0 + β1X + ε as

Y = β0 + β1X' + ε
where

X' = (X − X̄) / sX?
Then β1 is the change in Y associated with a one-σ increase in X.
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Standardization

This is also actually easy to do in R:

> x.prime <- scale(x)

Or:

> x.prime <- (x - mean(x)) / sd(x)
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> speed.prime <- scale(cars$speed)
> summary(speed.prime)
       V1          
 Min.   :-2.15597  
 1st Qu.:-0.64301  
 Median :-0.07565  
 Mean   : 0.00000  
 3rd Qu.: 0.68083  
 Max.   : 1.81555
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> lm(dist ~ speed.prime, data = cars)

Call:
lm(formula = dist ~ speed.prime, data = cars)

Coefficients:
(Intercept)  speed.prime  
      42.98        20.79
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> speed.km.prime <- scale(speed.km)
> summary(speed.km.prime)
       V1          
 Min.   :-2.15597  
 1st Qu.:-0.64301  
 Median :-0.07565  
 Mean   : 0.00000  
 3rd Qu.: 0.68083  
 Max.   : 1.81555
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> lm(dist ~ speed.prime.km, data = cars)

Call:
lm(formula = dist ~ speed.prime.km, data = cars)

Coefficients:
(Intercept)  speed.prime.km  
     42.980           20.79  
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While we normally divide by s, Gelman & Hill (2007:57) advise instead to divide by 2s, 
because this makes it easier to compare interval and binomial predictors.

> x.prime <- (x - mean(x)) / (2 * sd(x))

When a binomial predictor has p = .5, it has the roughly the range and sample 
standard deviation of an interval predictor standardized by 2s.

This is purely interpretative: it doesn't change the underlying model or inferences.

How many standard deviations?
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● Centering (subtracting the mean from an independent variable) makes it easier 
to interpret the intercept (e.g., as Y̅, and as the predicted value of y when x = X̄).
○ It does not change the underlying inference, however, just the interpretation.

● Standardization (centering followed by dividing by the sample standard 
deviation) makes it easier to interpret coefficients (other than the intercept) as 
the magnitude of change in Y for each sX.
○ This preserves the interpretation across any linear transformation of X.
○ But it can impact the inference when applying non-linear transformations to X (e.g., Hz vs. mel).
○ This can change the inference when there are multiple independent variables, because they may 

(and probably do) have different standard deviations.

Local summary
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Naturally, this ability to compare variables on different scales will be useful when we 
perform multiple regression (i.e., regression with several independent variables).

Looking forward...
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Categorical
variable coding
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When we have a binomial categorical variable (i.e. one that can take on at most two 
values), we use dummy coding, e.g.:

"dialect A": 0
"dialect B": 1

In fact, it doesn't really matter that much how we code binomial categorical variables, 
so long as the codes are two different real values.

Simple dummy coding
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This won't work correctly when we have three or more categories, e.g.:

Typical development (TD): 0
Specific language impairment (SLI): 1
Autism spectrum disorder (ASD): ??

If we say "2", then we are essentially treating a categorical variable like an interval 
variable. Not good!

But what about categorical variables in general?
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One straightforward extension of the binary dummy coding strategy is known as 
treatment coding. For a categorical variable with n levels it codes each observation 
using n − 1 binary values.

The "first" level of a categorical variable is coded as a sequence of n − 1 '0's, and then 
applies one-hot encoding for the remaining levels, with a '1' in the (n − 1)th slot.

FYI: R automatically picks one of the levels as the "first" one; you can change the 
order of the levels, but it's annoying.

To see how R constructs this, you can use contr.treatment.

Treatment coding
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> contr.treatment(2)
  2
1 0
2 1
> contr.treatment(3)
  2 3
1 0 0
2 1 0
3 0 1
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> contr.treatment(4)
  2 3 4
1 0 0 0
2 1 0 0
3 0 1 0
4 0 0 1
> contr.treatment(5)
  2 3 4 5
1 0 0 0 0
2 1 0 0 0
3 0 1 0 0
4 0 0 1 0
5 0 0 0 1
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Thus, for our earlier example, we might use:

Typical development (TD): [0, 0]
Specific language impairment (SLI): [1, 0]
Autism spectrum disorder (ASD): [0, 1]

Example
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Thus for a 3-way categorical variable:

Y = β0 + β1X' + β2X'' + ε
then

● β0 gives Y̅TD, the sample mean of Y for the TD group,
● β0 + β1 gives Y̅SLI, the sample mean of Y for the SLI group, and
● β0 + β2gives Y̅ASD, the sample mean of Y for the ASD group.

Interpretation
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Let:

● β0 = 0.191,
● β1 = −0.208, and
● β2 = 0.217.

Then:

● Y̅TD = 0.191
● Y̅SLI = 0.191 + −0.208 = −0.017
● Y̅ASD = 0.191 + 0.217 = 0.408  

Example
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Pros:

● It's easy to compute the category mean.

Cons:

● It's not easy to compute the overall mean.
● We have to arbitrarily choose one level as a baseline.

Pros and cons
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Sum coding is an alternative which compares each level to the global mean.

The first n − 1 levels are all one-hot encoded; the nth level is coded as a sequence of 
−1s.

To see how R constructs this, you can use contr.sum.

Sum coding
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> contr.sum(2)
  [,1]
1    1
2   -1
> contr.sum(3)
  [,1] [,2]
1    1    0
2    0    1
3   -1   -1
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> contr.sum(4)
  [,1] [,2] [,3]
1    1    0    0
2    0    1    0
3    0    0    1
4   -1   -1   -1
> contr.sum(5)
  [,1] [,2] [,3] [,4]
1    1    0    0    0
2    0    1    0    0
3    0    0    1    0
4    0    0    0    1
5   -1   -1   -1   -1
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Thus, for our earlier example, we might use:

Typical development (TD): [+1, +0]
Specific language impairment (SLI): [+0, +1]
Autism spectrum disorder (ASD): [−1, −1]

Example
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Thus for a 3-way categorical variable:

Y = β0 + β1X' + β2X'' + ε
then

● β0 gives Y̅,  the overall sample mean, 
● β0 + β1 gives Y̅TD, the sample mean of Y for the TD group,
● β0 + β2 gives Y̅SLI, the sample mean of Y for the SLI group, and
● β0 − β1 − β2 gives Y̅ASD, the sample mean of Y for the ASD group.

Interpretation
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Pros:

● β0 is once again the overall mean,
● and it's easy to compute the category mean.

Cons:

● The subtractions make getting category means a bit more challenging.

Pros and cons
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● Treatment coding compares the first level of a categorical variable to each of the 
remaining n − 1 levels.

● Sum coding compares each of the n levels of a categorical variable to the global 
mean.

Of course, there are many other categorical coding systems in R, including

● contrast coding, a variant of sum coding, and
● Helmert coding, which makes it easy to compute the category means, and
● (orthogonal) polynomial coding, which is sometimes used for ordinal IVs.

Local summary
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x <- factor(c("TD", "TD", "TD", "ASD", "ASD", "ASD", "ASD",     
              "SLI", "SLI"))
> contrasts(x)
  SLI TD
ASD   0  0
SLI   1  0
TD    0  1

How to apply in R (1/)

44



> contrasts(x) <- contr.sum
> contrasts(x)
    [,1] [,2]
ASD    1    0
SLI    0    1
TD    -1   -1

In other words, treatment coding is the default, but a categorical variable (a "factor" 
in R lingo) stores the contrast matrix: it's "stateful".

How to apply in R (2/)
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How to report (sum coding example)
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Coef. S.E. χ2 p(χ2)

(Intercept) −5.462 0.11

Group: 2.27 <.001

    TD 0.191 0.13

    ASD −0.208 0.19

    SLI 0.017 0.12



> contrasts(iris$Species) <- contr.sum
> r <- lm(Petal.Length ~ Species, data = iris)
> summary(r)
Call:
lm(formula = Petal.Length ~ Species, data = iris)

...

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  3.75800    0.03514  106.95   <2e-16 ***
Species1    -2.29600    0.04969  -46.21   <2e-16 ***
Species2     0.50200    0.04969   10.10   <2e-16 ***
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Post-hoc tests for 
categorical variables
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With a binomial categorical IV, we test the null hypothesis that the two samples are 
drawn from a single population, i.e., that they have the same population means.

We may also want to formulate additional null hypotheses such as "no two pairs of 
group means are different". E.g., spelling this out a bit:

● There are no differences between the TD and SLI groups.
● There are no differences between the TD and ASD groups.
● There are no differences between the SLI and ASD groups.

Significance at the category level does not imply significance in comparisons 
between individual pairs of groups!

Category vs. group significance
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● Our null hypothesis is that all group means are drawn from a single population 
so they should be normally distributed according to the central limit theorem.

● We could just repeatedly do binary tests, but if a category has j levels there are

j (j - 1) / 2
such combinations. For a category with 10 levels, that's 45 tests.

Motivation (1/)



● And what happens when we run many, many similar tests? The chance of type I 
error is

1 − (1− ɑ)j

where j is the number of tests. E.g., with ɑ = .05 and a category with 10 levels, ɑfw = 
.901.

Motivation (2/)



Correction for multiple comparison

Let X be a Bernoulli random variable such that P(X = true) = .5.

Then, for each of n "trials":

sample X repeatedly and test H0 : P(X = true) = .5 at ɑ.

How many times out of n will we (falsely) reject H0?

Answer: ɑ × n.

Our familywise error rate (our chance of getting any Type I error) is much larger than 
our nominal ɑ.



Bonferroni correction: implementation

One simple solution is the Bonferroni correction:

Reject H0 when P < ɑ / n.

The Bonferroni procedure is maximally conservative, i.e., it has low type I error (error 
of rejecting a true null hypothesis).

There are more sophisticated, less conservative procedures (I quite like the 
Benjamini-Hochberg one) and many of them are implemented by p.adjust in R.

One of them, specific to multiple pairwise comparisons, is the Tukey procedure.



(Also sometimes known as Tukey's Range test.)

Given two category means Y̅1 and Y̅2 such that Y̅1 < Y̅2, and n samples:

q = (Y̅2  − Y̅1) / (spooled + √[2 / n])
then q has a Studentized t-distribution parameterized by d.f. and number of 
comparisons: essentially a t-distribution corrected for multiple comparisons.

In R, the cumulative distribution function is ptukey and the quantile function is 
qtukey.

Tukey's Honestly Significant Difference (HSD) method



> r <- lm(Petal.Length ~ Species, data = iris)
> summary(r)

Call:
lm(formula = Petal.Length ~ Species, data = iris)

...

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)        1.46200    0.06086   24.02   <2e-16 ***
Speciesversicolor  2.79800    0.08607   32.51   <2e-16 ***
Speciesvirginica   4.09000    0.08607   47.52   <2e-16 ***
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One commonly-used way to test for group effects is to use the log-likelihood ratio 
test.

> drop1(r, test = "Chisq")
Single term deletions

Model:
Petal.Length ~ Species
        Df Sum of Sq    RSS     AIC  Pr(>Chi)    
<none>                27.22 -249.99              
Species  2     437.1 464.33  171.49  <2.2e-16 ***

"There is a significant effect of species at ɑ = .05 according to the log-likelihood ratio 
test (χ(2) = 437.1, p < .001)."
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> TukeyHSD(aov(r))
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = r)

$Species
                      diff     lwr     upr p adj
versicolor-setosa    2.798 2.59422 3.00178     0
virginica-setosa     4.090 3.88622 4.29378     0
virginica-versicolor 1.292 1.08822 1.49578     0

"All pairwise comparisons are significant at ɑfw = .05 (setosa < versicolor < virginica) 
according to the Tukey HSD test."
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The R library multcomp gives you more control over the definition of the HSD tests; 
for instance, you can choose not to run post-hoc tests on all categorical independent 
variables.

The printout is also a bit cleaner.

Alternatives



The Tukey HSD test assumes homoscedasticity across levels of a group.

Levene's test (levene.test in R) tests the null hypothesis of homoscedasticity 
across two or more levels.

Assumptions



Questions? Please take 
them to email, or Slack.
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