
One- and two-sample tests



Confidence interval for the mean 
if σ is  known but μ is not

σ
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Population         Sampling distribution
(approx. normal as n increases)
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Statistical inference: 



Confidence Interval

• Range which is expected to contain µ

• X
bar

 is center of CI

• Width of 95% CI is ± 1.96 SE (if σ is known)

• Width of 99% CI is ± 2.58 SE (if σ is known)

• Assumptions: the sampling distribution is 
approximately normal



Using CIs to test hypotheses about µ 

• Example:
In the general English-speaking Canadian population, the second 

formant (F2) of /æ/ produced by adult males has a mean 
frequency of 1550 Hz with a standard deviation of 100 Hz, and is 
normally distributed. A random sample of 10 adult 
English-speaking Canadian males from a town near the border 
of the predominantly French-speaking province of Quebec was 
found to have a mean F2 of 1450 Hz in the vowel /æ/. Is this F2 
level different from that of the general English-speaking 
Canadian adult male population?

H
0
: µ

town
 = 1550 (Null Hypothesis: not diff from gen pop)

H
1
: µ

town
 ≠ 1550 (Alternative Hypothesis)



Using CIs to test hypotheses about µ

• 95% CI
SE = 100/√10 = 31.64
µ =  X

bar
  ± z

critical
(SE)

µ =  1450 ± 1.96(31.64)
1388.02 < µ < 1511.98

• Only 5 times out of 100 does the 95% CI not contain the 
mean of the population that the sample was drawn from

• Our 95% CI does not contain 1550, therefore it is unlikely 
that the F2 of the adult males in the town is the same as 
the F2 of the adult males in the general Enlgish-speaking 
Canadian population  

• Reject H
0

> qnorm(c(0.025, 0.975), 
        1450, 100 / sqrt(10))
[1] 1388.02    1511.98



Testing hypotheses about 2 samples

• If 2 independent samples have X
bars

 with 95% CIs 
that do not overlap, we can conclude that the 
samples come from different populations

•  Example:
sample A: X

bar
 = 75; SE = 8;  95% CI: 59.32  < µ  <  90.68

sample B: X
bar

 = 54; SE = 2; 95% CI: 50.08  < µ  <  57.92

            54                75   

75-

50-

25-



Hypothesis testing: types of errors 

• Type I: Rejecting the null hypothesis when it 
should not be rejected (i.e., there really is no 
difference)
– probability of Type I error (α)

• the critical value of the test statistic 
• smaller α -> wider CI -> fewer rejections of H

0

• Type II: Not rejecting the null hypothesis when it 
should be rejected (i.e., there really is a 
difference)
– probability of Type II error (β) 

• Reduced by increasing n
• Reduced by increasing effect size



When is σ unknown

• Typical situation in research

• Can use the sample to estimate σ
• We already use X

bar
 to estimate µ 

X
bar

 is an unbiased estimator of µ.

A statistic is an unbiased estimator if

• its value in the long run (i.e., its average value) is 
equal to the population parameter, and

• the mean of sampling distribution of means are µ.



Using a sample to estimate σ2 

• Use X
bar

 as an estimate of µ

SS = Σ(x – X
bar

)2  instead of SS = Σ(x – µ)2

• But when estimating σ2 from sample data, the 
formula σ2 = Σ(x – X

bar
)2 / n produces a biased 

estimate of the population variance.
• To correct for this bias, use 

s2 = Σ(x – X
bar

)2 / (n - 1) 



 Biased and unbiased estimators

X1
X2 X1 X2

2 2 0 0 6 2 8 4
2 4 2 1 6 4 2 1
2 6 8 4 6 6 0 0
2 8 18 9 6 8 2 1
4 2 2 1 8 2 18 9
4 4 0 0 8 4 8 4
4 6 2 1 8 6 2 1
4 8 8 4 8 8 0 0

Formula for σ2 = SS/n
Formula for s2 = SS/(n-1)

Conclusion:
When using sample means instead of μ, the σ2 
formula produces a biased estimate of the 
population variance: 
(0+1+4+9+1+0+1+1+4+4+1+0+1+9+4+1+0)/16 = 2.5

but the s2 formula is unbiased:
(0+2+8+18+2+0+2+8+8+2+0+2+18+8+2+0)/16 = 5

Population Variance 



Degrees of freedom

• A correction (dividing by n - 1) is needed for the estimate 
(s2) because there are only n - 1 degrees of freedom in 
the sample if X

bar
 is used in computing the estimate of 

the variance
• Using X

bar
 reduces the number of scores that are free to 

vary in the sample
If X

bar
 is known, then n - 1 scores can vary but the nth is fixed

Example: X
bar

 = 7;  sample = {11, 8, 5, 9, 6, ?};  
? must be 3 

• In general, when computing a statistic, we lose 1 d.f. for 
each population parameter that we must estimate



Sampling distribution of s2

population = {2,4,6,8}

sample size = 2

                
mean = 5 = population variance

The sampling distribution of s2 has a mean equal to the population variance, 
which makes it an unbiased estimator of σ2. Note, however, that the distribution 
is skewed, with 10 samples having values less than the mean and only 6 having 
values greater than the mean. As a consequence of this, although s2 is unbiased, 
it is more likely that a sample's s2 will underestimate σ2 than overestimate it.



Using s2 in place of σ2 

• s2 = Σ(x – X
bar

)2 / (n - 1)sample variance

• s = √s2           sample standard deviation

• s
Xbar

 = SE = s /√n standard error of the mean
• The R functions var and sd use the unbiased formulae

• Because s2 is an estimate that is more likely to 
undershoot σ2 than to overshoot it, the normal 
distribution probabilities must be “corrected” to 
compensate for this



The t distribution

• First described by Guinness Brewery employee 
William Gossett in 1908, using the pen name 
“Student”; known as Student’s t.

• Family of distributions, different for each df 
Unimodal, symmetric, leptokurtic

heavy tails to compensate for “noise” in s

• Shape approaches normal as d.f. increases



t distributions



Critical values of t
    two-tailed test
α =0.05 0.01
(CI= 95% 99%)

• df =   5 2.57 4.03
• df = 10 2.23 3.17
• df = 20 2.09 2.85
• df = 40 2.02 2.70
• df = 80 1.99 2.65
• df = ∞ 1.96 2.58

> qt(.975, c(5, 10, 20, 40, 80, 1000))
[1] 2.570582    2.228139    2.085963    2.021075    
1.990063    1.962339
> qt(.995, c(5, 10, 20, 40, 80, 1000))
[1] 4.032143    3.169273    2.845340    2.704459    
2.638691    2.580755



Using s in place of σ 
Using t in place of the normal dist.

• s
Xbar

= SE = s/√n standard error

• t = (X
bar

 - µ
0
) / s

Xbar 
t-score for X

bar

• µ = X
bar  

± t
critical

(s
Xbar

) confidence interval

• Use the t distribution if s must be used to 
estimate σ and either the population is normal 
or n is not too small 



Confidence interval for the mean 
if both σ and μ are  unknown

σ

µ

Population         Sampling distribution
(approx. normal as n increases)

xx
x1      x2  
     x3   
           x4

Sample

n = 4
   = 9
s  = 2

  µ=???

Central
Limit
Theorem

       =9

μ = X
bar

 ± t
critical

(SE) 

Statistical inference: 



Using t to test hypotheses about µ 

• Example:
In the general English-speaking Canadian population, the second 

formant (F2) of /æ/ produced by adult males has a mean 
frequency of 1550 Hz. A random sample of 64 adult 
English-speaking Canadian males from a town near the border 
of the predominantly French-speaking province of Quebec was 
found to have a mean F2 of 1500 Hz for the vowel /æ/, with a 
standard deviation of 160. Is this F2 level different from that of 
the general English-speaking Canadian adult male population?

H
0
: µ

town
 = 1550 (Null hypothesis: not diff from genpop)

H
1
: µ

town
 ≠ 1550 (Alternative hypothesis)



Using t to test hypotheses about µ

• 95% CI

SE = s / √n = 160 / √64 = 20

µ =  X
bar

  ± t
critical

(SE)

d.f. = n - 1 = 64 - 1 = 63 

t
critical

 = ± 1.998 

µ =  1500 ± 1.998(20)

1460.03 < µ < 1539.97

> qt(c(.025, .975), 63)
[1] -1.998341    1.998341
> 1500 + qt(c(.025, .975),
            63) * 20
[1] 1460.033   1539.967



Using t to test hypotheses about µ 
(continued)

• Only 5 times out of 100 does the 95% CI not 
contain the mean of the population that the 
sample was drawn from

• Our 95% CI 1460.03 < µ < 1539.97 does not contain 
1550, and therefore it is unlikely that the adult male 
English-speaking residents of the town have the 
same F2 as the general adult male English-speaking 
Canadian population.

• Reject H
0
 



Hypothesis testing without 
constructing the CI

• t = (X
bar

 – µ
0
) / SE = –2.50

• d.f. = n – 1 = 64 – 1 = 63
– Compare calculated t to critical value of t listed in t-table

– Or in R: > t.test(d, mu = 1550)

One Sample t-test

data:  d
t = -2.500, df = 63, p-value = 0.0075
alternative hypothesis: true mean is 
not equal to 1550
95 percent confidence interval:
 1460.03   1539.97
...



One-tailed t test

• Suppose we have strong prior reason to believe that 
the adult male English-speaking residents of the 
town have F2 lower than the general population

• Consider only one direction of difference for H
A

• t
critical

  for α = 0.05, one-tailed test = -1.67 (with d.f. = 63)
• Smaller critical value makes it easier to reject H

0
 in 

predicted direction
– But cannot reject H

0 
if outcome is in opposite direction

I do not recommend this procedure in general.



Assumptions of single-sample t

• Random sampling from a population

• Interval or ratio scale variable

• Independence of scores 

• Normally distributed population or a sample 
size that is not too small (> 30)
• skewness, kurtosis

• qqnorm, qqline

• shapiro.test



Dependent (paired) t-test

• Each individual has 2 measures (a measure on 
each of 2 levels of a variable)
– Ex: performance before & after an intervention

acceptability of subject & object relatives

• Calculation by hand:
– Step 1: calculate the difference for each pair of 

scores (e.g., before – after; subject – object)

– Step 2: calculate a single sample t-test on the 
differences, usually with a H

0
: μ

diff
 = 0



Difference method for paired t
Subject Unprimed Primed Difference (D) 

A 550 510    40

B 1030 980    50

C 760 770   -10

D 600 600      0

E 940 870   70

F 820 760   60

Sum 210

Mean D
bar

 = 35.00

s S
D 

= 32.71

SE (= s
Dbar

 = S
D 

/ √n) S
Dbar

 = 13.35

t = (D
bar

 – µ
0
) / s

Dbar
 = (35 – 0) / 13.35  =  2.62;    d.f. = n - 1 = 5

For α= .05, critical t(5) = 2.57;  Conclusion: Reject the null hypothesis

95% CI:  µ
D
 = D

bar
  ±  t

critical
(s

Dbar
) = 35 ± 2.57 (13.35);      0.69  ≤  µ

D
  ≤ 69.31



Dependent (paired) t-test

> unprimed <- c(550, 1030, 760, 600, 940, 820)
> primed <- c(510, 980, 770, 600, 870, 760)
> t.test(unprimed,primed,paired = TRUE)

Paired t-test

data:  unprimed and primed
t = 2.6209, df = 5, p-value = 0.04705
alternative hypothesis: true difference in 
means is not equal to 0
95 percent confidence interval:
  0.6720635   69.3279365
sample estimates:
mean of the differences 
                     35 



Test statistics, in general

• A statistic for which the probabilities of 
particular values are known

• Observed values can be used to test 
hypotheses



Ordinal (rank) statistics

Dialect Vowel 
reductions

Rank

A 6 3

B 4 2

A 17 8

B 3 1

B 8 4

A 14 7

A 9 5

A 11 6

1    2    3    4    5   6    7    8    9   10   11   12   13  14   15   16  17

(          1   2        3        4    5         6                 7                8)

Vowel reductions
         (Ranks)



Wilcoxon rank-sum test
(Mann-Whitney U-test)

How unusual is it for the B dialect group, consisting
of 3 participants, to have ranks that total 7 (= 1 + 2 + 4)?

Of all the ways that the 3 participants in the B dialect 
group could have ranked, how unusual is the 
ranking that was actually obtained?

If a random process had assigned the ranks to the
participants in the 2 groups, how often would the result
be as extreme as or more extreme than the one 
obtained?



Wilcoxon rank-sum test
(Mann-Whitney U-test)

How many possible rankings are there for the 3 B dialect participants?
3 choose 8 = (8 · 7 · 6 · 5 · 4 · 3 · 2 · 1) / [(3 · 2 · 1)(5 · 4 · 3 · 2 · 1)] = 56

Ranks Total
123 6
124 7
125 8
126 9
127 10
128 11
134 8
135 9
136 10
137 11
138 12
145 10
146 11
147 12

Ranks Total
148 13
156 12
157 13
158 14
167 14
168 15
178 16
234 9
235 10
236 11
237 12
238 13
245 11
246 12

Ranks Total
247 13
248 14
256 13
257 14
258 15
267 15
268 16
278 17
345 12
346 13
347 14
348 15
356 14
357 15

Ranks Total
358 16
367 16
368 17
378 18
456 15
457 16
458 17
467 17
468 18
478 19
567 18
568 19
578 20
678 21



Wilcoxon rank-sum test
(Mann-Whitney U-test)

Question:
How unusual is it for the B dialect group, consisting
of 3 participants, to have ranks that total 7 (= 1 + 2 + 4)?

Answer:
Only 2 out of 56 possible assignments of ranks yields a rank total 
equal to or less than 7. The probability that the observed outcome 
is the result of chance is 2 / 56 = 0.0357, one-tailed. The two-tailed 
probability is .0714 (allowing for the possibility that the B dialect
group might have ranks on the other end of the distribution, i.e., 
ranks 8 + 7 + 5).

> wilcox.test(c(6, 17, 14, 9, 11), c(4, 3, 8))

Wilcoxon rank sum test

data:  c(6, 17, 14, 9, 11) and c(4, 3, 8)
W = 14, p-value = 0.07143
...





Handling ties

X Provisional 
Rank

Final 
Rank

6 1 1

8 2 2.5

8 3 2.5

11 4 4

19 5 6

19 6 6

19 7 6

26 8 8



Example 
The following hypothetical data are the numbers of correct responses in a sentence repetition 
task for patients with left- versus right-hemisphere brain damage:

Left:  5, 3, 8, 6
Right:  9, 13, 8, 7, 11, 6

3L 5L   6L   6R   7R   8R   8L   9R   11R 13R
1 2     3    4      5     6      7     8     9 10
1 2 3.5 3.5  5 6.5 6.5 8 9 10

ΣR
A
 = 1 + 2 + 3.5 + 6.5 = 13 0.05 < p ≤ 0.10 (from Wilcoxon Rank Sum Table)

> wilcox.test(c(5, 3, 8, 6), c(9, 13, 8, 7, 11, 6))

Wilcoxon rank sum test with continuity correction

data:  c(5, 3, 8, 6) and c(9, 13, 8, 7, 11, 6)
W = 3, p-value = 0.06826
...
Warning message:
In wilcox.test.default(c(5, 3, 8, 6), c(9, 13, 8, 7, 11, 6)) :
  cannot compute exact p-value with ties



Wilcoxon rank-sum test
(Mann-Whitney Test)

Normal approximation for large N (> 20) 
or tied ranks



Repeated-measures (i.e., 
within-subjects) research designs 
required for a dependent t-test

• Order effects
Presenting condition A before condition B
– subjects may improve performance over time
– subjects may become fatigued over time
Solution: counterbalancing 

half of subjects get A first, then B 
other half of subjects get B first, then A

Solution: intermixing (simultaneous repeated measures)
multiple trials representing A and B are randomly 

interleaved: ABBABABBAAAB….



Problems (continued)

• Carryover effects
Example:
Administering drug may have permanent or long term effect 

on subject, so in Drug-Placebo order, Placebo reflects Drug 
effect

Two methods for ESL teaching cannot be used on same 
students

• Mutually exclusive subject selection categories, where 
matching of subjects is difficult or impossible

native speaker of English, non-native speaker of English
clinically depressed subject, non-depressed subject 



Independent t-test

• Also known as independent samples t, two-sample t, 
independent groups t, between-subjects t...

• For each subject, dependent variable is measured 
on only one level of the independent variable 
– RT to recognize words but each subject is in either 

primed condition or unprimed condition
(each subject gets one condition)

– Proportion of passives is measured but subject is 
either Adult or Child (each subject is in only one group)



Independent t-test

• Each subject provides data for only one condition
• Differences between conditions also reflect 

individual differences between subjects
• To calculate an independent t

(1) for each group, calculate X
bar

 and variance
(2) calculate standard error of X

bar1
 – X

bar2
(3) compute t by comparing (X

bar1
 – X

bar2
) to null  

hypothesis difference of means  µ
1
 – µ

2
 = 0



What is the mean of the sampling 
distribution of X

bar1
– X

bar2
?

• Suppose the 2 samples come from populations 
with the same µ (i.e., they come from the same 
population), then:
– sampling distribution of X

bar1
 will have a mean of µ

– sampling distribution of X
bar2

 will have a mean of µ

• so, if populations are the same, then mean value 
of X

bar1
– X

bar2
 will be µ

1
 – µ

2
 = 0

    



What is the standard error of X
bar1 

– X
bar2

?

• sampling distrib. of X
bar1

 will have a variance of s2
1 

/ n
1

• sampling distrib. of X
bar2

 will have a variance of s2
2 

/ n
2

• Variance Sum Law
“the variance of the sum or difference of two independent 

variables is equal to the sum of their variances”

So the variance of X
bar1

– X
bar2

 is s2
1
/ n

1
 + s2

2 
/ n

2
  

Standard error of X
bar1

– X
bar2

 is s
Xbar1–Xbar2

 =



Sampling distribution of the 
differences between means

Sampling distribution of X
bar1

Sampling distribution of X
bar2

Xbar1a

Xbar2a

Xbar1b

Xbar2b

(Xbar1a – Xbar2a) (Xbar1b – Xbar2b)

Sampling distribution of X
bar1

 – X
bar2



Unprimed (Group 0) Primed  (Group 1)

A 550 G 510

B 1030 H 980

C 760 I 770

D 600 J 600

E 940 K 870

F 820 L 760

Sum 4700 4490

Mean 783.33 748.33

s 187.26 171.98

s2 35066 29577

s2 / n 5844.33 4929.50

SE = √[s2/ n
1 

 +  s2 / n
2
] = √[5844.33 + 4929.50] = 103.80

t = (X
bar1

 – X
bar2

) / SE = (783.33 – 748.33) / 103.80  =  .337
d.f. = n

1 
 + n

2 
– 2 = 10  

For α = .05, critical t(10) = 2.23; 
Conclusion: do not reject null hypothesis

95% CI:  µ
1
 – µ

2
 = X

bar1
 – X

bar2
  ±  t

critical
(SE) = 35 ± 2.23 (103.80)      

 95% CI:  –196.28  ≤  µ
1
 – µ

2
  ≤  266.28



Standard error of the difference 
between 2 means

• If sample sizes are unequal (n
1
 ≠ n

2
), the 

pooled variance is used in place of each 
sample variance:

• So the formula for the SE becomes: 

Standard error of X
bar1

– X
bar2

 = s
Xbar1 – Xbar2

 =



If the sample variances are unequal

• Pooling of variances should not be used

• Homogeneity of variances can be tested with
> unprimed = c(550, 1030, 760, 600, 940, 820)
> primed = c(510, 980, 770, 600, 870, 760)
> var.test(unprimed, primed)

F test to compare two variances

data:  unprimed and primed 
F = 1.1856, num df = 5, denom df = 5, p-value = 0.8563
alternative hypothesis: true ratio of variances is not equal to 
1 
...

not different in 
this example



> t.test(primed, unprimed, var.equal = TRUE)

Two Sample t-test

data:  primed and unprimed 
t = -0.3372, df = 10, p-value = 0.7429
...

> t.test(primed, unprimed)

Welch Two Sample t-test

data:  primed and unprimed 
t = -0.3372, df = 9.928, p-value = 0.743
...

By default, R adjusts 
the degrees of 
freedom under the 
assumption of 
unequal variances



If data are from paired measurements, 
dependent t has more power than 

independent  t
> t.test(unprimed, primed, paired = TRUE)

Paired t-test

data:  unprimed and primed
t = 2.6209, df = 5, p-value = 0.04705
...

t(5) = 2.621, p =.047 for dependent t  vs. t(10) = 0.337, p = .743 for independent t

•Dependent t removes the variability due to participants (individual differences)
•SE for Independent t contains variability due to different participants
 



The independent t-test has more 
power than Wilcoxon test

1    2    3    4    5    6    7   8    9   10  11   12   13  14   15   16   17   18   19   20   21   22  23

(         1    2         3       4    5        6                 7                                                        8)

Results of an independent samples t-test on the vowel reduction data:

t(6) = 2.30, p = 0.0306, one-tailed; p = 0.0612, two-tailed

But suppose the data had been the following:

Results of the Wilcoxon rank-sum test are the same, but now  t(6) = 1.88, 

p = 0.0544, one-tailed;  p = 0.1087, two-tailed 



Assumptions of independent t-test

• Random sampling

• Interval or ratio scale dependent variable

• Nominal scale independent variable (groups)

• Independence of scores 

• Approximately normally distributed populations 
or sample sizes that are not too small

• Equal variances in the two populations, or use 
of the Welch version of the test


