LING82100: homework 1 solution

1 Arithmetic

1. $>1 / 3+1 / 4$
[1] 0.5833333
2. >2 - $10+1$
[1] 1025
3. > f <- 440
> $1127 * \log (1+f / 700)$
[1] 549.6415
4. > a <- 2
$>\mathrm{b}<-4$
$>\mathrm{c}<--4$
> (-b + sqrt(b - 2 - 4 * a * c)) / (2 * a)
[1] 0.7320508

2 Categorical data

d <- read.csv("http://wellformedness.com/courses/LING82100/Data/NYC.csv")

```
    •> d.p1 <- droplevels(subset(d, word == "fouRth" & emphasis == "emphatic"))
    > table(d.p1)
    , , emphasis = emphatic, word = fouRth
        store
        r Klein's Macy's Saks
        1 
```

In other words, just 6 times at S. Klein's, 13 times at Macy's, and 16 times at Saks 5th Ave.

- > d.p2 <- subset(d, word == "flooR" \& store == "Klein's")
> mean(d.p2\$r)
[1] 0.1153846
In other words, 11.54% of the time. (This hack works just because r is coded as 1 and no- r is coded as 0 .)

3 Ratio data

```
> d <- read.table("http://wellformedness.com/courses/LING82100/Data/VOT.tsv",
                    header = TRUE)
```

- > quantile(d\$vot)
0\% $25 \% \quad 50 \% \quad 75 \% \quad 100 \%$
$\begin{array}{lllll}-85.290 & -17.975 & 13.825 & 27.365 & 82.860\end{array}$

The first sample quartile is -17.98 , the sample median is 13.83 , and the third sample quartile is 82.86 .

- > d.spanish <- subset(d, language == "spanish")
> mean(d.spanish\$vot)
[1] -24.31306
The sample mean VOT for Spanish speakers is $\mu=-24.31$. (Spanish voiced obstruents are pre-voiced, presumably).
- > d.english <- subset(d, language == "english")
> sd(d\$vot)
[1] 19.86479
The sample standard deviation VOT for English speakers is $s=19.86$.

