STATISTICAL
INFERENCE

LANGUAGE MODELING

SHANNON GAME

Statistical Inference: n-gram
Models over Sparse Data

STATISTICAL NLP aims to do statistical inference for the field of natu-
ral language. Statistical inference-in general consists of taking some data
(generated in accordance with some unknown probability distribution)
and then making some inferences about this distribution. For example,
we might look at lots of instances of prepositional phrase attachments
in a corpus, and use them to try to predict prepositional phrase attach-
ments for English in general. The discussion in this chapter divides the
problem into three areas (although they tend to overlap considerably): di-
viding the training data into equivalence classes, finding a good statistical
estimator for each equivalence class, and combining multiple estimators.

As a running example of statistical estimation, we will examine the
classic task of language modeling, where the problem is to predict the
next word given the previous words. This task is fundamental to speech
or optical character recognition, and is also used for spelling correction,
handwriting recognition, and statistical machine translation. This sort of
task is often referred to as a Shannon game following the presentation
of the task of guessing the next letter in a text in (Shannon 1951). This
problem has been well-studied, and indeed many estimation methods
were first developed for this task. In general, though, the methods we
develop are not specific to this task, and can be directly used for other
tasks like word sense disambiguation or probabilistic parsing. The word
prediction task just provides a clear easily-understood problem for which
the techniques can be developed.

—

192

6.1

6.1.1

TARGET FEATURE
CLASSIFICATORY
FEATURES

INDEPENDENCE
ASSUMPTIONS

BINS

RELIABILITY

6.1.2

(6.1)

HISTORY

6 Statistical Inference: n-gram Models over Sparse Data

Bins: Forming Equivalence Classes

Reliability vs. discrimination

Normally, in order to do inference about one feature, we wish to find
other features of the model that predict it. Here, we are assuming that
past behavior is a good guide to what will happen in the future (that is,
that the model is roughly stationary). This gives us a classification task:
we try to predict the target feature on the basis of various classificatory
features. When doing this, we effectively divide the data into equivalence
classes that share values for certain of the classificatory features, and use
this equivalence classing to help predict the value of the target feature
on new pieces of data. This means that we are tacitly making indepen-
dence assumptions: the data either does not depend on other features, or
the dependence is sufficiently minor that we hope that we can neglect it
without doing too much harm. The more classificatory features (of some
relevance) that we identify, the more finely conditions that determine the
unknown probability distribution of the target feature can potentially be
teased apart. In other words, dividing the data into many bins gives us
greater discrimination. Going against this is the problem that if we use a
lot of bins then a particular bin may contain no or a very small number of
training instances, and then we will not be able to do statistically reliable
estimation of the target feature for that bin. Finding equivalence classes
that are a good compromise between these two criteria is our first goal.

n-gram models

The task of predicting the next word can be stated as attempting to esti-
mate the probability function P:

P(wnplwi,...,wn1)

In such a stochastic problem, we use a classification of the previous
words, the history, to predict the next word. On the basis of having looked
at a lot of text, we know which words tend to follow other words.

For this task, we cannot possibly consider each textual history sepa-
rately: most of the time we will be listening to a sentence that we have
never heard before, and so there is no previous identical textual history
on which to base our predictions, and even if we had heard the begin-
ning of the sentence before, it might end differently this time. And so we

MARKOV ASSUMPTION

BIGRAM

TRIGRAM
FOUR-GRAM

DIGRAM

(6.2)

PARAMETERS

6.1 Bins: Forming Equivalence Classes 193

need a method of grouping histories that are similar in some way so as
to give reasonable predictions as to which words we can expect to come
next. One possible way to group them is by making a Markov assumption
that only the prior local context - the last few words - affects the next
word. If we construct a model where all histories that have the same last
n — 1 words are placed in the same equivalence class, then we have an
(n — 1)® order Markov model or an n-gram word model (the last word of
the n-gram being given by the word we are predicting).

Before continuing with model-building, let us pause for a brief inter-
lude on naming. The cases of n-gram models that people usually use are
for n = 2,3,4, and these alternatives are usually referred to as a bigram,
a trigram, and a four-gram model, respectively. Revealing this will surely
be enough to cause any Classicists who are reading this book to stop,
and to leave the field to uneducated engineering sorts: gram is a Greek
root and so should be put together with Greek number prefixes. Shannon
actually did use the term digram, but with the declining levels of educa-
tion in recent decades, this usage has not survived. As non-prescriptive
linguists, however, we think that the curious mixture of English, Greek,
and Latin that our colleagues actually use is quite fun. So we will not try
to stamp it out.!

Now in principle, we would like the n of our n-gram models to be fairly
large, because there are sequences of words like:

Sue swallowed the large green __,

where swallowed is presumably still quite strongly influencing which
word will come next - pill or perhaps frog are likely continuations, but
tree, car or mountain are presumably unlikely, even though they are in
general fairly natural continuations after the large green __. However,
there is the problem that if we divide the data into too many bins, then
there are a lot of parameters to estimate. For instance, if we conser-
vatively assume that a speaker is staying within a vocabulary of 20,000
words, then we get the estimates for numbers of parameters shown in
table 6.1.2

1. Rather than four-gram, some people do make an attempt at appearing educated by
saying quadgram, but this is not really correct use of a Latin number prefix (which would
give quadrigram, cf. quadrilateral), let alone correct use of a Greek number prefix, which
would give us “a tetragram model.”

2. Given a certain model space (here word n-gram models), the parameters are the num-
bers that we have to specify to determine a particular model within that model space.

194

STEMMING

6 Statistical Inference: n-gram Models over Sparse Data

Model Parameters

1st order (bigram model): 20,000 x 19,999 = 400 million
ond order (trigram model): 20,0002 x 19,999 = 8 trillion
3th order (four-gram model): 20, 0003 x 19,999 = 1.6 X 1017

Table 6.1 Growth in number of parameters for n-gram models.

So we quickly see that producing a five-gram model, of the sort that
we thought would be useful above, may well not be practical, even if
we have what we think is a very large corpus. For this reason, n-gram
systems currently usually use bigrams OF trigrams (and often make do
with a smaller vocabulary).

One way of reducing the number of parameters is to reduce the value
of n, but it is important to realize that n-grams are not the only way
of forming equivalence classes of the history. Among other operations
of equivalencing, we could consider stemming (removing the inflectional
endings from words) or grouping words into semantic classes (by use
of a pre-existing thesaurus, OT by some induced clustering). This is ef-
fectively reducing the yocabulary size over which we form n-grams. But
we do not need to use n-grams at all. There are myriad other ways of

forming equivalence classes of the history - it's just that they're all a bit
more complicated than n-grams. The above example suggests that know-.
ledge of the predicate in a clause is useful, so we can imagine a model
that predicts the next word based on the previous word and the previ-
ous predicate (no matter how far back it is). But this model is harder t0
implement, because we first need a fairly accurate method of identifyin
the main predicate of a clause. Therefore we will just use n-gram models

in this chapter, but other techniques are covered in chapters 12 and 14.

For anyone from a linguistics background, the idea that we would
choose to use a model of language structure which predicts the next word
simply by examining the previous two words - with no reference to ‘

structure of the sentence - seems almost preposterous. But, actually, t

Since we are assuming nothing in particular about the probability distribution, the
ber of parameters 10 be estimated is the number of bins times one less than the I
of values of the target feature (one is subtracted because the probability of the last taf
value is automatically given by the stochastic constraint that probabilities should suf

one).

6.1.3

6.1 Bins: Forming Equivalence Classes 195

lexical co-occurrence, semantic, and basic syntactic relationships that ap-
pear in this very local context are a good predictor of the next word,
and such systems work surprisingly well. Indeed, it is difficult to beat a
trigram model on the purely linear task of predicting the next word.

Building n-gram models

In the final part of some sections of this chapter, we will actually build
some models and show the results. The reader should be able to recreate
our results by using the tools and data on the accompanying website. The
text that we will use is Jane Austen’s novels, and is available from the
website. This corpus has two advantages: (i) it is freely available through
the work of Project Gutenberg, and (ii) it is not too large. The small size
of the corpus is, of course, in many ways also a disadvantage. Because of
the huge number of parameters of n-gram models, as discussed above,
n-gram models work best when trained on enormous amounts of data.
However, such training requires a lot of CPU time and diskspace, so a
small corpus is much more appropriate for a textbook example. Even so,
you will want to make sure that you start off with about 40Mb of free
diskspace before attempting to recreate our examples.

As usual, the first step is to preprocess the corpus. The Project Guten-
berg Austen texts are very clean plain ASCII files. But nevertheless, there
are the usual problems of punctuation marks attaching to words and so
on (see chapter 4) that mean that we must do more than simply split on
whitespace. We decided that we could make do with some very simple
search-and-replace patterns that removed all punctuation leaving white-
space separated words (see the website for details). We decided to use
Emma, Mansfield Park, Northanger Abbey, Pride and Prejudice, and Sense
and Sensibility as our corpus for building models, reserving Persuasion
for testing, as discussed below. This gave us a (small) training corpus of
N = 617,091 words of text, containing a vocabulary V of 14,585 word
types.

By simply removing all punctuation as we did, our file is literally a long
sequence of words. This isn’t actually what people do most of the time.
It is commonly felt that there are not very strong dependencies between
sentences, while sentences tend to begin in characteristic ways. So people
mark the sentences in the text - most commonly by surrounding them
with thg SGML tags <s> and </s>. The probability calculations at the

196

6.2

(6.3)

6 Statistical Inference: n-gram Models over Sparse Data

start of a sentence are then dependent not on the last words of the pre-
ceding sentence but upon a beginning of sentence’ context. We should
additionally note that we didn’t remove case distinctions, sO capitalized
words remain in the data, imperfectly indicating where new sentences

begin.

Statistical Estimators

Given a certain number of pieces of training data that fall into a certain
bin, the second goal is then finding out how 10 derive a good probabil-
ity estimate for the target feature based on these data. For our running
example of n-grams, we will be interested in P(wy - - - wy) and the predic-

tion task P(wniw1 - - - Wp-1). Since:

PWalwy - - - W) = %

estimating good conditional probability distributions can be reduced to
having good solutions to simply estimating the unknown probability dis- \
tribution of n-grams (all in one bin, with no classificatory features).> :
Let us assume that the training text consists of N words. If we append
n — 1 dummy start symbols to the beginning of the text, we can then
also say that the corpus consists of N n-grams, with a uniform amount '
of conditioning available for the next word in all cases. Let B be the
number of values that the target feature can take on. This will be V, the
vocabulary size, for the task of predicting the next word and yn for the
task of estimating the probability of different n-grams. Let C(wy " Wn 4
be the frequency of a certain n-gram in the training text, and let us say
that there are N, n-grams that appeared v times in the training text (i.ey
Ny = {{wi--"Wn: C(wy -+ -Wn) = r}l). These frequencies of frequen:

cies are very commonly used in the estimation methods which we cOVer

below. This notation is summarized in table 6.2.

3. However, when smoothing, one has a choice of whether to smooth the n-gram pros
ability estimates on the right-hand side of equation (6.3), or 1o smooth the conditif
probability distributions directly. For many methods, these do not give equivalent ¥
sults since in the latter case one is separately smoothing a large number of conditio!
probability distributions with V values, rather than smoothing a single large multino i

distribution with V" target feature values.

6.2 Statistical Estimators 197

N Number of training instances

B Number of values in the multinomial target feature distribution
\% Vocabulary size

Win An n-gram wj - - - wy, in the training text

C(wr -+ -wy) Frequency of n-gram wj - - - wy in training text

¥ Frequency of an n-gram

() Frequency estimate of a model

N, Number of target feature values seen r times in training instances
T, Total count of n-grams of frequency r in further data

h ‘History’ of preceding words

Table 6.2 Notation for the statistical estimation chapter.

6.2.1 Maximum Likelihood Estimation (MLE)
MLE estimates from relative frequencies

Regardless of how we form equivalence classes, we will end up with bins
that contain a certain number of training instances. Let us assume a
trigram model where we are using the two preceding words of context to
predict the next word, and let us focus in on the bin for the case where
t]ﬁ}#(? two preceding words were comes across. In a certain corpus, the
authors found 10 training instances of the words comes across, and of
those, 8 times they were followed by as, once by more and once by a.
The question at this point is what probability estimates we should use
for estimating the next word.

The obvious first answer (at least from a frequentist point of view) is

RELATIVE FREQUENCY t0 suggest using the relative frequency as a probability estimate:

P(as) = 0.8
P(more) = 0.1
Pla) = 0.1
P(x) = 0.0 forx notamong the above 3 words

MAXIMUM LikELIHOoD This estimate is called the maximum likelihood estimate (MLE):
ESTIMATE

(64) Pre(wy - - - wy) = SOVL- " Wn)

N

Clwy - - wy)

(6.5) Prvie(Wnlwy « - - wy_q) = Cwy -+ Wp_1)

198

LIKELIHOOD
FUNCTION

6 Statistical Inference: n-gram Models over Sparse Data

If one fixes the observed data, and then considers the space of all pos-
sible parameter assignments within a certain distribution (here a trigram
model) given the data, then statisticians refer to this as a likelihood func-
tion. The maximum likelihood estimate is so called because it is the
choice of parameter values which gives the highest probability to the
training corpus.* The estimate that does that is the one shown above.
It does not waste any probability mass on events that are not in the train-

.ing corpus, but rather it makes the probability of observed events as high
as it can subject to the normal stochastic constraints.

But the MLE is in general unsuitable for statistical inference in NLP.
The problem is the sparseness of our data (even if we are using a large
corpus). While a few words are common, the vast majority of words are
very uncommon - and longer n-grams involving them are thus much rarer
again. The MLE assigns a zero probability to unseen events, and since
the probability of a long string is generally computed by multiplying the
probabilities of subparts, these zeroes will propagate and give us bad
(zero probability) estimates for the probability of sentences when we just
happened not to see certain n-grams in the training text.> With respect to
the example above, the MLE is not capturing the fact that there are other
words which can follow comes across, for example the and some.

As an example of data sparseness, after training on 1.5 million words
from the IBM Laser Patent Text corpus, Bahl et al. (1983) report that 23%
of the trigram tokens found in further test data drawn from the same

corpus were previously unseen. This corpus is small by modern stan-
dards, and so one might hope that by collecting much more data that the
problem of data sparseness would simply go away. While this may ini-
tially seem hopeful (if we collect a hundred instances of comes across, we
will probably find instances with it followed by the and some), in practice
it is never a general solution to the problem. While there are a limited
number of frequent events in language, there is a seemingly never end-

4, This is given that the occurrence of a certain n-gram is assumed to be a random variable
with a binomial distribution (i.e., each n-gram is independent of the next). This is a quite
untrue (though usable) assumption: firstly, each n-gram overlaps with and hence partly
determines the next, and secondly, content words tend to clump (if you use a word once.
in a paper, you are likely to use it again), as we discuss in section 15.3.
5. Another way to state this is to observe that if our probability model assigns Zero prob-
ability to any event that turns out to actually occur, then both the cross-entropy and the
KL divergence with respect to (data from) the real probability distribution is infinite. 1
other words we have done a maximally bad job at producing a probability function
is close to the one we are trying to model.

RARE EVENTS

DISCOUNTING
SMOOTHING

HAPAX LEGOMENA

6.2 Statistical Estimators 199

ing tail to the probability distribution of rarer and rarer events, and we
can never collect enough data to get to the end of the tail.® For instance
comes across could be followed by any number, and we will never see ev-
ery number. In general, we need to devise better estimators that allow for
the possibility that we will see events that we didn’t see in the training
text.

All such methods effectively work by somewhat decreasing the proba-
bility of previously seen events, so that there is a little bit of probability
mass left over for previously unseen events. Thus these methods are fre-
quently referred to as discounting methods. The process of discounting is
often referred to as smoothing, presumably because a distribution with-
out zeroes is smoother than one with zeroes. We will examine a number
of smoothing methods in the following sections.

Using MLE estimates for n-gram models of Austen

Based on our Austen corpus, we made n-gram models for different values
of n. It is quite straightforward to write one’s own program to do this,
by totalling up the frequencies of n-grams and (n — 1)-grams, and then
dividing to get MLE probability estimates, but there is also software to do
it on the website.

In practical systems, it is usual to not actually calculate n-grams for
all words. Rather, the n-grams are calculated as usual only for the most
common k words, and all other words are regarded as Out-Of-Vocabulary
(00V) items and mapped to a single token such as <UNK>. Commonly, this
will be done for all words that have been encountered only once in the
training corpus (hapax legomena). A useful variant in some domains is to
notice the obvious semantic and distributional similarity of rare numbers
and to have two out-of-vocabulary tokens, one for numbers and one for
everything else. Because of the Zipfian distribution of words, cutting out
low frequency items will greatly reduce the parameter space (and the
memory requirements of the system being built), while not appreciably
affecting the model quality (hapax legomena often constitute half of the
types, but only a fraction of the tokens).

We used the conditional probabilities calculated from our training cor-
pus to work out the probabilities of each following word for part of a

6. Cf. Zipf’s law - the observation that the relationship between a word’s frequency and
the rank order of its frequency is roughly a reciprocal curve - as discussed in section 1.4.3.

200

In
person

1-gram

BN =

.13
234
435
1701

2-gram

W=

23
41

293

3-gram

SN =

4-gram
1

she

P(-)

the 0.034
to 0.032
and 0.030
of 0.029
was 0.015
she 0011
P(-|person)
and 0.099
who 0.099
to 0.076
in 0.045
she 0.009

P(-|In,person)
UNSEEN

P(-lulp)
UNSEEN

was

P()

the 0.034
to 0.032
and 0.030
of 0.029
was 0.015
P(-|she)

had 0.141
was 0.122

P(-|person,she)

did 0.5
was 0.5

P (N II,D,S)
UNSEEN

6 Statistical Inference: n-gram Models over Sparse Data

inferior to

P() P(-)

the 0.034 the 0.034
to 0.032 to 0.032
and 0.030

of 0.029

was 0.015

she 0.011

both 0.0005

sisters 0.0003

inferior 0.00005

P(-lwas) P(-linferior)
not 0.065 to 0.212
a 0.052

the 0.033

to 0.031

inferior 0

P(:|she,was) P(-|was,inf.)
not 0.057 UNSEEN
very 0.038

in 0.030

to 0.026

inferior 0

P(-Ipsw) P(-iswyi)

in 1.0 UNSEEN
inferior 0

both

P()

the 0.034
to 0.032
and 0.030
of 0.029
was 0.015
she 0.011
both 0.0005
P(-|to)

be 0.111
the 0.057
her 0.048
have 0.027
Mrs 0.006
what 0.004
both 0.0004

P(:|inferior,to)

the 0.286
Maria 0.143
cherries 0.143
her 0.143
both 0
P(-lwit)
UNSEEN

sisters
P(-)
the 0.034
to 0.032
and 0.030
of 0.029
was 0.015
she 0.011
both 0.0005
sisters 0.0003
P(-|both)
of 0.066
to 0.041
in 0.038
and 0.025
she 0.009
sisters 0.006
P(-|to,both)
to 0.222
Chapter 0.111
Hour 0.111
Twice 0.111
sisters 0
P(-litb)

UNSEEN

Table 6.3 Probabilities of each successive word for a clause from Persuasion.
The probability distribution for the following word is calculated by Maximum
Likelihood Estimate n-gram models for various values of n. The predicted likeli-
hood rank of different words is shown in the first column. The actual next word
is shown at the top of the table in italics, and in the table in bold.

6.2 Statistical Estimators 201

sentence from our test corpus Persuasion. We will cover the issue of test
corpora in more detail later, but it is vital for assessing a model that
we try it on different data - otherwise it isn’t a fair test of how well the
model allows us to predict the patterns of language. Extracts from these
probability distributions - including the actual next word shown in bold
- are shown in table 6.3. The unigram distribution ignores context en-
tirely, and simply uses the overall frequency of different words. But this
is not entirely useless, since, as in this clause, most words in most sen-
tences are common words. The bigram model uses the preceding word
to help predict the next word. In general, this helps enormously, and
gives us a much better model. In some cases the estimated probability
of the word that actually comes next has gone up by about an order of
magnitude (was, to, sisters). However, note that the bigram model is not
guaranteed to increase the probability estimate. The estimate for she has
actually gone down, because she is in general very common in Austen
novels (being mainly books about women), but somewhat unexpected af-
ter the noun person - although quite possible when an adverbial phrase
is being used, such as In person here. The failure to predict inferior after
was shows problems of data sparseness already starting to crop up.

When the trigram model works, it can work brilliantly. For example, it
gives us a probability estimate of 0.5 for was following person she. But in
general it is not usable. Either the preceding bigram was never seen be-
fore, and then there is no probability distribution for the following word,
or a few words have been seen following that bigram, but the data is so
sparse that the resulting estimates are highly unreliable. For example, the
bigram to both was seen 9 times in the training text, twice followed by to,
and once each followed by 7 other words, a few of which are shown in the
table. This is not the kind of density of data on which one can sensibly
build a probabilistic model. The four-gram model is entirely useless. In
general, four-gram models do not become usable until one is training on
several tens of millions of words of data.

Examining the table suggests an obvious strategy: use higher order
n-gram models when one has seen enough data for them to be of some
use, but back off to lower order n-gram models when there isn’t enough
data. This is a widely used strategy, which we will discuss below in the
section on combining estimates, but it isn’t by itself a complete solution
to the problem of n-gram estimates. For instance, we saw quite a lot of
words following was in the training data - 9409 tokens of 1481 types -
but inferior was not one of them. Similarly, although we had seen quite

202

6.2.2

(6.6)

ADDING ONE

EXPECTED FREQUENCY
ESTIMATES

6 Statistical Inference: n-gram Models over Sparse Data

a lot of words in our training text overall, there are many words that
did not appear, including perfectly ordinary words like decides or wart.
So regardless of how we combine estimates, we still definitely need a
way to give a non-zero probability estimate to words or n-grams that we
happened not to see in our training text, and so we will work on that
problem first.

Laplace’s law, Lidstone’s law and the Jeffreys-Perks law
Laplace’s law

The manifest failure of maximum likelihood estimation forces us to ex-
amine better estimators. The oldest solution is to employ Laplace’s law
(1814; 1995). According to this law,

Cwy---wp) +1
N+B

This process is often informally referred to as adding one, and has the
effect of giving a little bit of the probability space to unseen events.
But rather than simply being an unprincipled move, this is actually the
Bayesian estimator that one derives if one assumes a uniform prior on
events (i.e., that every n-gram was equally likely).

However, note that the estimates which Laplace’s law gives are depen-
dent on the size of the vocabulary. For sparse sets of data over large
vocabularies, such as n-grams, Laplace’s law actually gives far too much
of the probability space to unseen events.

Consider some data discussed by Church and Gale (1991a) in the con-
text of their discussion of various estimators for bigrams. Their corpus
of 44 million words of Associated Press (AP) newswire had a total vo-
cabulary of 400,653 words (maintaining case distinctions, splitting on
hyphens, etc.). Note that this vocabulary size means that there is a space
of 1.6 x 101! possible bigrams, and so a priori barely any of them will
actually occur in the corpus. It also means that in a calculation of PpLap,
B is far larger than N, and Laplace’s method is completely unsatisfactory
in such circumstances. Church and Gale used half the corpus (22 million
words tokens, containing V = 273,266 word types) as a training text.
Table 6.4 shows their bigram expected frequency estimates according to
various estimation methods, and Laplace’s law estimates that we have cal-
culated. Probability estimates can be derived by dividing the frequency
estimates by the number of n-grams, N = 22 million. For Laplace’s law, '

Prap(wy - - - Wn) =

6.2 Statistical Estimators 203

r=fwig f empirical f Lap fdel fer Ny Ty
0 0.000027 0.000295 0.000037 0.000027 74671100000 2019187
1 0.448 0.000589 0.396 0.446 2 018 046 903 206
2 1.25 0.000884 1.24 1.26 449 721 564 153
3 2.24 0.00118 2.23 2.24 188 933 424 015
4 3.23 0.00147 3.22 3.24 105 668 341 099
5 4.21 0.00177 4.22 4.22 68 379 287776
6 5.23 0.00206 5.20 5.19 48 190 251951
7 6.21 0.00236 6.21 6.21 35709 221 693
8 7.21 0.00265 7.18 7.24 27 710 199 779
9 8.26 0.00295 8.18 8.25 22 280 183 971

Table 6.4 Estimated frequencies for the AP data from Church and Gale (1991a).
The first five columns show the estimated frequency calculated for a bigram that
actually appeared r times in the training data according to different estimators:
v is the maximum likelihood estimate, fempirical Uses validation on the test set,
fLap is the ‘add one’ method, fge is deleted interpolation (two-way cross valida-
tion, using the training data), and fgr is the Good-Turing estimate. The last two
columns give the frequencies of frequencies and how often bigrams of a certain
frequency occurred in further text.

the probability estimate for an n-gram seen r times is (r + 1)/ (N + B), so
the frequency estimate becomes frap = (r+1)N/(N +B). These estimated
frequencies are often easier for humans to interpret than probabilities, as
one can more easily see the effect of the discounting.

Although each previously unseen bigram has been given a very low
probability, because there are so many of them, 99.97% of the probability
mass has actually been given to unseen bigrams.” This is far too much,
and it is done at the cost of enormously reducing the probability esti-
mates of more frequent events. How do we know it is far too much? The
second column of the table shows an empirically determined estimate
(which we discuss below) of how often unseen n-grams actually appeared
in further text, and we see that the individual frequency of occurrence
of previously unseen n-grams is much lower than Laplace’s law predicts,
while the frequency of occurrence of previously seen n-grams is much
higher than predicted.? In particular, the empirical model finds that only
9.2% of the bigrams in further text were previously unseen.

7. This is calculated as No X Prap(+) = 74,671,100, 000x0.000295/22, 000,000 = 0.9997.
8. It is a bit hard dealing with the astronomical numbers in the table. A smaller example
which illustrates the same point appears in exercise 6.2.

204

6.7)

(6.8

EXPECTED LIKELIHOOD
ESTIMATION

6 Statistical Inference: n-gram Models over Sparse Data

Lidstone’s law and the Jeffreys-Perks law

Because of this overestimation, a commonly adopted solution to the prob-
lem of multinomial estimation within statistical practice is Lidstone’s law
of succession, where we add not one, but some (normally smaller) posi-
tive value A:

Clwy -+ -wp)+2A
N + BA

This method was developed by the actuaries Hardy and Lidstone, and
Johnson showed that it can be viewed as a linear interpolation (see below)
between the MLE estimate and a uniform prior. This may be seen by
setting u = N/(N + BA):

Prig(wy - - = wy) =

C(wi - - - Wn)

1
N +(1—M)§

Pug(wy - -wp) =i
The most widely used value for A is 3. This choice can be theoretically
justified as being the expectation of the same quantity which is maxi-
mized by MLE and so it has its own names, the Jeffreys-Perks law, or
Expected Likelihood Estimation (ELE) (Box and Tiao 1973: 34-36).

In practice, this often helps. For example, we could avoid the objection
above that too much of the probability space was being given to unseen
events by choosing a small A. But there are two remaining objections:
(i) we need a good way to guess an appropriate value for A in advance, and
(ii) discounting using Lidstone’s law always gives probability estimates
linear in the MLE frequency and this is not a good match to the empirical
distribution at low frequencies.

Applying these methods to Austen

Despite the problems inherent in these methods, we will nevertheless try
applying them, in particular ELE, to our Austen corpus. Recall that up
until now the only probability estimate we have been able to derive for
the test corpus clause she was inferior to both sisters was the unigram
estimate, which (multiplying through the bold probabilities in the top
part of table 6.3) gives as its estimate for the probability of the clause
3.96 x 10-17. For the other models, the probability estimate was either -
zero or undefined, because of the sparseness of the data.

Let us now calculate a probability estimate for this clause using a bi-
gram model and ELE, smoothing the conditional distributions directly.

6.2.3

6.2 Statistical Estimators 205

Rank Word MLE ELE

1 not 0.065 0.036

2 a 0.052 0.030

3 the 0.033 0.019

4 to 0.031 0.017
=1482 inferior 0 0.00003

Table 6.5 Expected Likelihood Estimation estimates for the word following was.

Following the word was, which appeared 9409 times, not appeared 608
times in the training corpus, which overall contained 14585 word types.
So our new estimate for P(not|was) is (608 +0.5)/(9409 + 14585 x 0.5) =
0.036. The estimate for P(not|was) has thus been discounted (by almost
half?). If we do similar calculations for the other words, then we get the
results shown in the last column of table 6.5. The ordering of most likely
words is naturally unchanged, but the probability estimates of words that
did appear in the training text are discounted, while non-occurring words,
in particular the actual next word, inferior, are given a non-zero proba-
bility of occurrence. Continuing in this way to also estimate the other
bigram probabilities, we find that this language model gives a probability
estimate for the clause of 6.89 x 1072°. Unfortunately, this probabil-
ity estimate is actually lower than the MLE estimate based on unigram
counts - reflecting how greatly all the MLE probability estimates for seen
n-grams are discounted in the construction of the ELE model. This result
substantiates the slogan used in the titles of (Gale and Church 1990a,b):
poor estimates of context are worse than none. Note, however, that this
does not mean that the model that we have constructed is entirely use-
less. Although the probability estimates it gives are extremely low, one
can nevertheless use them to rank alternatives. For example, the model
does correctly tell us that she was inferior to both sisters is a much more
likely clause in English than inferior to was both she sisters, whereas the
unigram estimate gives them both the same probability.

Held out estimation

How do we know that giving 46.5% of the probability space to unseen
events is too much? One way that we can test this is empirically. We

206

HELD OUT ESTIMATOR

(6.9)

(6.10)

TRAINING DATA

OVERTRAINING

TEST DATA

6 Statistical Inference: n-gram Models over Sparse Data

can take further text (assumed to be from the same source) and see how
often bigrams that appeared r times in the training text tend to turn up
in the further text. The realization of this idea is the held out estimator
of Jelinek and Mercer (1985).

The held out estimator
For each n-gram, wy - - - Wy, let:

Ci(wy---wn) = frequency of wy - - - wy in training data
Co(wy - --wy) = frequency of wi - - - wy in held out data

and recall that N, is the number of n-grams with frequency r (in the
training text). Now let:

T, = > Co(wy ++ - wp)
(w1 wniCr (W1 -+ -wn) =1}
That is, T, is the total number of times that all n-grams that appeared
r times in the training text appeared in the held out data. Then the aver-
age frequency of those n-grams is %',';- and so an estimate for the proba-
bility of one of these n-grams is:
T

Pho(wr + - - wp) = NrT
r

where C;(wy - --wp) =r,and T =37, T

Pots of data for developing and testing models

A cardinal sin in Statistical NLP is to test on your training data. But why is
that? The idea of testing is to assess how well a particular model works.
That can only be done if it is a ‘fair test’ on data that has not been seen
before. In general, models induced from a sample of data have a tendency
to be overtrained, that is, to expect future events to be like the events on
which the model was trained, rather than allowing sufficiently for other
possibilities. (For instance, stock market models sometimes suffer from
this failing.) So it is essential to test on different data. A particular case
of this is for the calculation of cross entropy (section 2.2.6). To calculate
cross entropy, we take a large sample of text and calculate the per-word
entropy of that text according to our model. This gives us a measure
of the quality of our model, and an upper bound for the entropy of the
language that the text was drawn from in general. But all that is only
true if the test data is independent of the training data, and large enough

HELD OUT DATA
VALIDATION DATA

DEVELOPMENT TEST

SET
FINAL TEST SET

6.2 Statistical Estimators 207

to be indicative of the complexity of the language at hand. If we test
on the training data, the cross entropy can easily be lower than the real
entropy of the text. In the most blatant case we could build a model
that has memorized the training text and always predicts the next word
with probability 1. Even if we don’t do that, we will find that MLE is an
excellent language model if you are testing on training data, which is not
the right result.

So when starting to work with some data, one should always separate
it immediately into a training portion and a testing portion. The test data
is normally only a small percentage (5-10%) of the total data, but has to
be sufficient for the results to be reliable. You should always eyeball the
training data - you want to use your human pattern-finding abilities to
get hints on how to proceed. You shouldn’t eyeball the test data - that’s
cheating, even if less directly than getting your program to memorize it.

Commonly, however, one wants to divide both the training and test
data into two again, for different reasons. For many Statistical NLP meth-
ods, such as held out estimation of n-grams, one gathers counts from
one lot of training data, and then one smooths these counts or estimates
certain other parameters of the assumed model based on what turns up
in further held out or validation data. The held out data needs to be inde-
pendent of both the primary training data and the test data. Normally the
stage using the held out data involves the estimation of many fewer pa-
rameters than are estimated from counts over the primary training data,
and so it is appropriate for the held out data to be much smaller than the
primary training data (commonly about 10% of the size). Nevertheless, it
is important that there is sufficient data for any additional parameters of
the model to be accurately estimated, or significant performance losses
can occur (as Chen and Goodman (1996: 317) show).

A typical pattern in Statistical NLP research is to write an algorithm,
train it, and test it, note some things that it does wrong, revise it and
then to repeat the process (often many times!). But, if one does that a lot,
not only does one tend to end up seeing aspects of the test set, but just
repeatedly trying out different variant algorithms and looking at their
performance can be viewed as subtly probing the contents of the test set.
This means that testing a succession of variant models can again lead to
overtraining. So the right approach is to have two test sets: a development
test set on which successive variant methods are trialed and a final test
set which is used to produce the final results that are published about
the performance of the algorithm. One should expect performance on

208

VARIANCE

6 Statistical Inference: n-gram Models over Sparse Data

the final test set to be slightly lower than on the development test set
(though sometimes one can be lucky).

The discussion so far leaves open exactly how to choose which parts
of the data are to be used as testing data. Actually here opinion divides
into two schools. One school favors selecting bits (sentences or even n-
grams) randomly from throughout the data for the test set and using the
rest of the material for training. The advantage of this method is that
the testing data is as similar as possible (with respect to genre, register,
writer, and vocabulary) to the training data. That is, one is training from
as accurate a sample as possible of the type of language in the test data.
The other possibility is to set aside large contiguous chunks as test data.
The advantage of this is the opposite: in practice, one will end up using
any NLP system on data that varies a little from the training data, as
language use changes a little in topic and structure with the passage of
time. Therefore, some people think it best 10 simulate that a little by
choosing test data that perhaps isn’t quite stationary with respect to the
training data. At any rate, if using held out estimation of parameters, it is
best to choose the same strategy for setting aside data for held out data
as for test data, as this makes the held out data a better simulation of
the test data. This choice is one of the many reasons why system results
can be hard to compare: all else being equal, one should expect slightly
worse performance results if using the second approach.

While covering testing, let us mention one other issue. In early work, it
was common to just run the system on the test data and present a single
performance figure (for perplexity, percent correct or whatever). But this
isn’t a very good way of testing, as it gives no idea of the variance in
the performance of the system. A much better way is to divide the test
data into, say 20, smaller samples, and work out a test result on each of
them. From those results, one can work out a mean performance figure,
as before, but one can also calculate the variance that shows how much
performance tends to vary. If using this method together with continuous
chunks of training data, it is probably best to take the smaller testing
samples from different regions of the data, since the testing lore tends
to be full of stories about certain sections of data sets being “easy,” and
so it is better to have used a range of test data from different sections of
the corpus.

If we proceed this way, then one system can score higher on average
than another purely by accident, especially when within-system variance
is high. So just comparing average scores is not enough for meaningful

t TEST

6.2 Statistical Estimators 209

System 1 System 2

scores 71,61, 55,60, 68,49, 42,55, 75, 45, 54, 51
42,72, 76, 55, 64 55, 36, 58, 55, 67
total 673 593
n 11 11
mean X; 61.2 53.9
s? = S (xij — %;)? 1,081.6 1,186.9
df 10 10
Pooled 52 = LOBLE+LISES 73 4

t= % = 7=-61'f.11+53§9 ~ 1.60
Table 6.6 Using the t test for comparing the performance of two systems. Since
we calculate the mean for each data set, the denominator in the calculation of
variance and the number of degrees of freedom is (11 — 1) + (11 — 1) = 20.
The data do not provide clear support for the superiority of system 1. Despite
the clear difference in mean scores, the sample variance is too high to draw any
definitive conclusions.

system comparison. Instead, we need to apply a statistical test that takes
into account both mean and variance. Only if the statistical test rejects
the possibility of an accidental difference can we say with confidence that
one system is better than the other.?

An example of using the t test (which we introduced in section 5.3.1)
for comparing the performance of two systems is shown in table 6.6
(adapted from (Snedecor and Cochran 1989: 92)). Note that we use a
pooled estimate of the sample variance s2 here under the assumption
that the variance of the two systems is the same (which seems a reason-
able assumption here: 673 and 593 are close enough). Looking up the
t distribution in the appendix, we find that, for rejecting the hypothesis
that the system 1 is better than system 2 at a probability level of & = 0.05,
the critical value is t = 1.725 (using a one-tailed test with 20 degrees of
freedom). Since we have t = 1.60 < 1.725, the data fail the significance
test. Although the averages are fairly distinct, we cannot conclude supe-
riority of system 1 here because of the large variance of scores.

9. Systematic discussion of testing methodology for comparing statistical and machine
learning algorithms can be found in (Dietterich 1998). Mooney (1996) provides a good
case study for the example of word sense disambiguation.

210

6.2.4

CROSS-VALIDATION

DELETED ESTIMATION

6 Statistical Inference: n-gram Models over Sparse Data

Using held out estimation on the test data

So long as the frequency of an n-gram C(wy - - - wp) is the only thing that
we are using to predict its future frequency in text, then we can use held
out estimation performed on the test set to provide the correct answer of
what the discounted estimates of probabilities should be in order to max-
imize the probability of the test set data. Doing this empirically measures
how often n-grams that were seen r times in the training data actually do
occur in the test text. The empirical estimates fempirical in table 6.4 were
found by randomly dividing the 44 million bigrams in the whole AP cor-
pus into equal-sized training and test sets, counting frequencies in the
22 million word training set and then doing held out estimation using
the test set. Whereas other estimates are calculated only from the 22
million words of training data, this estimate can be regarded as an em-
pirically determined gold standard, achieved by allowing access to the
test data.

Cross-validation (deleted estimation)

The fempirical €stimates discussed immediately above were constructed
by looking at what actually happened in the test data. But the idea of
held out estimation is that we can achieve the same effect by dividing the
training data into two parts. We build initial estimates by doing counts
on one part, and then we use the other pool of held out data to refine
those estimates. The only cost of this approach is that our initial training
data is now less, and so our probability estimates will be less reliable.

Rather than using some of the training data only for frequency counts
and some only for smoothing probability estimates, more efficient
schemes are possible where each part of the training data is used both
as initial training data and as held out data. In general, such methods in
statistics go under the name cross-validation.

Jelinek and Mercer (1985) use a form of two-way cross-validation that
they call deleted estimation. Suppose we let N be the number of n-grams
occurring r times in the a®® part of the training data, and T¢” be the total
occurrences of those bigrams from part a in the b™ part. Now depending
on which part is viewed as the basic training data, standard held out
estimates would be either:

01 Trlo

= —r
NN 7 NIN

Pro(Wy = wn) where C(wy ---wy) =¥

(6.11)

LEAVING-ONE-OUT

6.2 Statistical Estimators 211

The more efficient deleted interpolation estimate does counts and
smoothing on both halves and then does a weighted average of the two
according to the proportion of words in N? versus N}l

TP + 110

Paa(wy - - - wy) = NN ND

where C(wy - - -wy) = r

On large training corpora, doing deleted estimation on the training data
works better than doing held-out estimation using just the training data,
and indeed table 6.4 shows that it produces results that are quite close
to the empirical gold standard.” It is nevertheless still some way off for
low frequency events. It overestimates the expected frequency of unseen
objects, while underestimating the expected frequency of objects that
were seen once in the training data. By dividing the text into two parts
like this, one estimates the probability of an object by how many times
it was seen in a sample of size %’, assuming that the probability of a
token seen r times in a sample of size g is double that of a token seen r
times in a sample of size N. However, it is generally true that as the size
of the training corpus increases, the percentage of unseen n-grams that
one encounters in held out data, and hence one’s probability estimate
for unseen n-grams, decreases (while never becoming negligible). It is for
this reason that collecting counts on a smaller training corpus has the
effect of overestimating the probability of unseen n-grams..

There are other ways of doing cross-validation. In particular Ney et al.
(1997) explore a method that they call Leaving-One-Out where the pri-
mary training corpus is of size N — 1 tokens, while 1 token is used as
held out data for a sort of simulated testing. This process is repeated N
times so that each piece of data is left out in turn. The advantage of this
training regime is that it explores the effect of how the model changes if
any particular piece of data had not been observed, and Ney et al. show
strong connections between the resulting formulas and the widely-used
Good-Turing method to which we turn next !

10. Remember that, although the empirical gold standard was derived by held out esti-
mation, it was held out estimation based on looking at the test data! Chen and Goodman
(1998) find in their study that for smaller training corpora, held out estimation outper-
forms deleted estimation.

11. However, Chen and Goodman (1996: 314) suggest that leaving one word out at a
time is problematic, and that using larger deleted chunks in deleted interpolation is to be
preferred.

214

6 Statistical Inference: n-gram Models over Sparse Data

Bigrams Trigrams

r Ny r Ny r Ny r¥r Ny
1 138741 28 90 1 404211 28 35
2 25413 29 120 2 32514 29 32
3 10531 30 86 3 10056 30 25
4 5997 31 98 4 4780 31 18
5 3565 32 99 5 2491 32 19
6 2486 cee 6 1571 s
7 1754 1264 1 7 1088 189 1
8 1342 1366 1 8 749 202 1
9 1106 1917 1 9 582 214 1
10 896 2233 1 10 432 366 1
s 2507 1 s 378 1

Table 6.7 Extracts from the frequencies of frequencies distribution for bigrams
and trigrams in the Austen corpus.

section 1.4.3 but different in the details of construction, and more exag-
gerated because they count sequences of words.) Table 6.8 then shows
the reestimated counts r* and corresponding probabilities for bigrams.

For the bigrams, the mass reserved for unseen bigrams, Ni/N =
138741/617091 = 0.2248. The space of bigrams is the vocabulary
squared, and we saw 199,252 bigrams, so using uniform estimates,
the probability estimate for each unseen bigram is: 0.2248/(14585% -
199252) = 1.058 x 10~9. If we now wish to work out conditional prob-
ability estimates for a bigram model by using Good-Turing estimates for
bigram probability estimates, and MLE estimates directly for unigrams,
then we begin as follows:

fer(person she) _ 1.228 _
C(person) 223 0.0055

P (she|person) =

Continuing in this way gives the results in table 6.9, which can be com-
pared with the bigram estimates in table 6.3. The estimates in general
seem quite reasonable. Multiplying these numbers, we come up with 2
probability estimate for the clause of 1.278 x 10~17. This is at least much
higher than the ELE estimate, but still suffers from assuming a uniform
distribution over unseen bigrams.

6.2 Statistical Estimators 215

r* Pgr(-)
0.0007 1.058 x 10~°
0.3663 5.982 x 10~7

1.228 2.004 x 10-6
2.122 3.465x 1076
3.058 4.993x 106
4.015 6.555x 1076
4984 8.138x10°6

5.96 9.733x10°6
6.942 1.134x 1075
7.928 1.294x10°5
8916 1.456x 1075

OO OND U WN O N

28 26.84 4.383x10°5
29 27.84 4.546x10°°
30 28.84 4.709x10°5
31 29.84 4.872x10°5
32 30.84 5.035x10°5

1264 1263 0.002062
1366 1365 0.002228
1917 1916 0.003128
2233 2232 0.003644
2507 2506 0.004092

Table 6.8 Good-Turing estimates for bigrams: Adjusted frequencies and prob-
abilities. Smoothed using the software on the website.

P(she|person) 0.0055
P(was|she) 0.1217
P(inferiorlwas) 6.9 x 108
P(tolinferior) 0.1806
P(both|to) 0.0003956
P(sisters|both) 0.003874

Table 6.9 Good-Turing bigram frequency estimates for the clause from Persua-
sion.

216

6.2.6

(6.15)

(6.16)

6 Statistical Inference: n-gram Models over Sparse Data

Briefly noted

Ney and Essen (1993) and Ney et al. (1994) propose twWo discounting mod-
els: in the absolute discounting model, all non-zero MLE frequencies are
discounted by a small constant amount & and the frequency so gained is
uniformly distributed over unseen events:

Absolute discounting: HCwy- - Wn) =T

(r-8)/N ifr>0
Paps(W1+ " Wn) = Q%ﬁg)ﬁ otherwise

(Recall that B is the number of number of target feature values.) In the
linear discounting method, the non-zero MLE frequencies are scaled by
a constant slightly less than one, and the remaining probability mass is
again distributed across novel events:

Linear discounting: HCwy-wn) =T,

P(wi---Wn) = (1-or/N ifr>0
' n | «/No otherwise

These estimates are equivalent to the frequent engineering move of mak-
ing the probability of unseen events some small number € instead of
zero and then rescaling the other probabilities sO that they still sum 1o
one - the choice between them depending on whether the other proba-
bilities are scaled by subtracting or multiplying by a constant. Looking
again at the figures in table 6.4 indicates that absolute discounting seems
like it could provide a good estimate. Examining the fempirical figures
there, it seems that a discount of § = 0.77 would work well except for
bigrams that have only been seen once previously (which would be un-
derestimated). In general, we could use held out data to estimate a good
value for 6. Extensions of the absolute discounting approach are very
successful, as we discuss below. It is hard to justify linear discounting.
In general, the higher the frequency of an item in the training text, the
more accurate an unadjusted MLE estimate is, but the linear discounting
method does not even approximate this observation. _

A shortcoming of Lidstone’s law is that it depends on the number of
target feature values in the model. While some unseen values result from
sparse data problems, many more may be principled gaps. Good-Turing

NATURAL LAW OF
SUCCESSION

(6.17)

6.3

6.3 Combining Estimators 217

estimation is one method where the estimates of previously seen items
do not depend on the number of possible values. Ristad (1995) explores
the hypothesis that natural sequences use only a subset of the possible
values. He derives various forms for a Natural Law of Succession, in-
cluding the following probability estimate for an n-gram with observed
frequency C(wy - - - wy) =r:

+1)
Frf@ if Ng=0
Pris(wy - owy) = CRRTEENEE i Ny > 0and r > 0
(B—Ny) (B—Ny +1) .
No(N?N+2(B-Ngy Otherwise
The central features of this law are: (i) it reduces to Laplace’s law if every
target feature value has been seen, (ii) the amount of probability mass
assigned to unseen events decreases quadratically in the number N of
trials, and (iii) the total probability mass assigned to unseen events is

independent of the number of target feature values B, so there is no
penalty for large vocabularies.

Combining Estimators

So far the methods we have considered have all made use of nothing but
the raw frequency r of an n-gram and have tried to produce the best es-
timate of its probability in future text from that. But rather than giving
the same estimate for all n-grams that never appeared or appeared only
rarely, we could hope to produce better estimates by looking at the fre-
quency of the (n—1)-grams found in the n-gram. If these (n— 1)-grams are
themselves rare, then we give a low estimate to the n-gram. If the (n—1)-
grams are of moderate frequency, then we give a higher probability esti-
mate for the n-gram.!3 Church and Gale (1 991a) present a detailed study
of this idea, showing how probability estimates for unseen bigrams can
be estimated in terms of the probabilities of the unigrams that compose
them. For unseen bigrams, they calculate the joint-if-independent prob-
ability P(w;)P(w;), and then group the bigrams into buckets based on
this quantity. Good-Turing estimation is then performed on each bucket
to give corrected counts that are normalized to vield probabilities.

13. But if the (n — 1)-grams are of very high frequency, then we may actually want to

lower the estimate again, because the non-appearance of the n-gram is then presumably
indicative of a principled gap.

218

6.3.1

LINEAR
INTERPOLATION
MIXTURE MODELS

DELETED
INTERPOLATION

(6.18)

6 Statistical Inference: n-gram Models over Sparse Data

But in this section we consider the more general problem of how to
combine multiple probability estimates from various different models. If
we have several models of how the history predicts what comes next, then
we might wish to combine them in the hope of producing an even better
model. The idea behind wanting to do this may either be smoothing, or
simply combining different information sources.

For n-gram models, suitably combining various models of different or-
ders is in general the secret to success. Simply combining MLE n-gram

estimates of various orders (with some allowance for unseen words) us--

ing the simple linear interpolation technique presented below results in
a quite good language model (Chen and Goodman 1996). One can do bet-
ter, but not by simply using the methods presented above. Rather one
needs to combine the methods presented above with the methods for
combining estimators presented below.

Simple linear interpolation

One way of solving the sparseness in a trigram model is to mix that model
with bigram and unigram models that suffer less from data sparseness.
In any case where there are multiple probability estimates, we can make
a linear combination of them, providing only that we weight the contri-
bution of each so that the result is another probability function. Inside
Statistical NLP, this is usually called linear interpolation, but elsewhere
the name (finite) mixture models is more common. When the functions
being interpolated all use a subset of the conditioning information of
the most discriminating function (as in the combination of trigram, bi-
gram and unigram models), this method is often referred to as deleted
interpolation. For interpolating n-gram language models, such as deleted
interpolation from a trigram model, the most basic way to do this is:

Pii(Wn|Wn-2,Wn-1) = A1 P1(Wn) + A2P2(Wn|Wn-1) + A3P3(Wn|Wn_1,Wn-2)

where 0 < A; <1land>;A;=1.

While the weights may be set by hand, in general one wants to find the
combination of weights that works best. This can be done automatically
by a simple application of the Expectation Maximization (EM) algorithm,
as is discussed in section 9.2.1, or by other numerical algorithms. For
instance, Chen and Goodman (1996) use Powell’s algorithm, as presented
in (Press et al. 1988). Chen and Goodman (1996) show that this simple

— — R

6.3.2

BACK-OFF MODELS

(6.19)

6.3 Combining Estimators 219

model (with just slight complications to deal with previously unseen his-
tories and to reserve some probability mass for out of vocabulary items)
works quite well. They use it as the baseline model (see section 7.1.3) in
their experiments.

Katz’s backing-off

In back-off models, different models are consulted in order depending
on their specificity. The most detailed model that is deemed to provide
sufficiently reliable information about the current context is used. Again,
back-off may be used to smooth or to combine information sources.
Back-off n-gram models were proposed by Katz (1987). The estimate
for an n-gram is allowed to back off through progressively shorter histo-
ries:
(1= Aoy pyomy) oty
if CWions1 - wy) > k
Owi_ner+--wio1 Poo (Wi | Wi—pyp + - - Wi-1)
otherwise

Poo (Wi |Wi_pyy - - - Wi-1) =

If the n-gram of concern has appeared more than k times (k is normally
set to O or 1), then an »n-gram estimate is used, as in the first line. But the
MLE estimate is discounted a certain amount (represented by the function
d) so that some probability mass is reserved for unseen n-grams whose
probability will be estimated by backing off. The MLE estimates need to
be discounted in some manner, or else there would be no probability
mass to distribute to the lower order models. One possibility for calcu-
lating the discount is the Good-Turing estimates discussed above, and
this is what Katz actually used. If the n-gram did not appear or appeared
k times or less in the training data, then we will use an estimate from a
shorter n-gram. However, this back-off probability has to be multiplied
by a normalizing factor o so that only the probability mass left over in
the discounting process is distributed among n-grams that are estimated
by backing off. Note that in the particular case where the (n — 1)-gram in
the immediately preceding history was unseen, the first line is inapplica-
ble for any choice of w;, and the back-off factor o takes on the value 1. If
the second line is chosen, estimation is done recursively via an (n - 1)-
gram estimate. This recursion can continue down, so that one can start

220

6.3.3

(6.20)

6 Statistical Inference: n-gram Models over Sparse Data

with a four-gram model and end up estimating the next word based on
unigram frequencies.

While backing off in the absence of much data is generally reasonable,
it can actually work badly in some circumstances. If we have seen the bi-
gram w;Ww; many times, and wy is a common word, but we have never seen
the trigram w;WjWk, then at some point we should actually conclude that
this is significant, and perhaps represents a ‘grammatical zero, rather
than routinely backing off and estimating P (wk|h) via the bigram esti-
mate P(wklwj). Rosenfeld and Huang (1992) suggest a more complex
back-off model that attempts t0 correct for this.

Back-off models are sometimes criticized because their probability es-
timates can change suddenly on adding more data when the back-off al-
gorithm selects & different order of n-gram model on which to base the
estimate. Nevertheless, they are simple and in practice work well.

General linear interpolation

In simple linear interpolation, the weights were just a single number, but
one can define a more general and powerful model where the weights are
a function of the history. For k probability functions Py the general form
for a linear interpolation model is:

k
py(wih) = > AW Pi(wih)
i=1

where Vh, 0 < Aj(h) =1 and X Ai(h) = 1.

Linear interpolation is commonly used because it is a very general way
to combine models. Randomly adding in dubious models to a linear in-
terpolation need not do harm providing one finds a good weighting of
the models using the EM algorithm. But linear interpolation can make
bad use of component models, especially if there is not a careful par-
titioning of the histories with different weights used for different sorts
of histories. For instance, if the A; are just constants in an interpola-
tion of n-gram models, the unigram estimate is always combined in with
the same weight regardless of whether the trigram estimate is very good
(because there is a 1ot of data) or very poor.

In general the weights are not set according to individual histories.
Training a distinct Awg_psi-n for each W(i_n+1)(-1) is notin general fe-
licitous, because it would worsen the sparse data problem. Rather one.

(6.21)

6.3 Combining Estimators 221

wants to use some sort of equivalence classing of the histories. Bahl et al.
(1983) suggest partitioning the A into bins according to C (Wii—n+1)(i-1))»
and tying the parameters for all histories with the same frequency.

Chen and Goodman (1996) show that rather than this method of put-
ting the A parameters into bins, a better way is to group them according
to the average number of counts per non-zero element:

C(W(i—n+1)(i-1))
[wi : C(W(i-n413i) > O]

That is, we take the average count over non-zero counts for n-grams
Wi-n+1 - - - Wi-1w*. We presume that the reason this works is that, be-
cause of the syntax of language, there are strong structural constraints
on which words are possible or normal after certain other words. While
it is central to most Statistical NLP language models that any word is al-
lowed after any other - and this lets us deal with all possible disfluencies
- nevertheless in many situations there are strong constraints on what
can normally be expected due to the constraints of grammar. While some
n-grams have just not been seen, others are ‘grammatical zeroes,’ to coin
a phrase, because they do not fit with the grammatical rules of the lan-
guage. For instance, in our Austen training corpus, both of the bigrams
great deal and of that occur 178 times. But of that is followed in the
corpus by 115 different words, giving an average count of 1.55, reflecting
the fact that any adverb, adjective, or noun can felicitously follow within
a noun phrase, and any capitalized word starting a new sentence is also
a possibility. There are thus fairly few grammatical zeroes (mainly just
verbs and prepositions). On the other hand, great deal is followed by
only 36 words giving an average count of 4.94. While a new sentence
start is again a possibility, grammatical possibilities are otherwise pretty
much limited to conjunctions, prepositions, and the comparative form of
adjectives. In particular, the preposition of follows 38% of the time. The
higher average count reflects the far greater number of grammatical ze-
roes following this bigram, and so it is correct to give new unseen words
a much lower estimate of occurrence in this context.

Finally, note that back-off models are actually a special case of the gen-
eral linear interpolation model. In back-off models, the functions A;(h)
are chosen so that their value is 0 for a history h except for the coefficient
of the model that would have been chosen using a back-off model, which
has the value 1.

222

6.3.4

WITTEN-BELL
SMOOTHING

6.22)

(6.23)

LINEAR SUCCESSIVE
ABSTRACTION

(6.24)

6 Statistical Inference: n-gram Models over Sparse Data

Briefly noted

Bell et al. (1990) and Witten and Bell (1991) introduce a number of
smoothing algorithms for the goal of improving text compression. Their
“Method C” is normally referred to as Witten-Bell smoothing and has been
used for smoothing speech language models. The idea is to model the
probability of a previously unseen event by estimating the probability of
seeing such a new (previously unseen) event at each point as one proceeds
through the training corpus. In particular, this probability is worked out
relative to a certain history. So to calculate the probability of seeing a
new word after, say, sat in one is calculating from the training data how
often one saw a new word after sat in, which is just the count of the num-
ber of trigram types seen which begin with sat in. It is thus an instance
of generalized linear interpolation:

Py (WilW(i—n+1)-1)) = Awgonsnyo-1 PMEEWi [W(i—n+1)(-1))
+(]- - AW(,‘_".‘.l)(,*_.l))I)W'B(‘Vl'h'v(l'—l'l'l-Z)(i—l))
where the probability mass given to new n-grams is given by:

H{wi : C(Wi—n+1 - - - wi) > 0}
[{wi : C(Wizps1 + - wy) > O} + Xy, C(Wionsa - - - wi)

However, Chen and Goodman’s (1998) results suggest that this method
is not as good a smoothing technique for language models as others that
we discuss in this section (performing particularly poorly when used on
small training sets):

Samuelsson (1996) develops Linear Successive Abstraction, a method of
determining the parameters of deleted interpolation style models without
the need for their empirical determination on held out data. Samuels-
son’s results suggest similar performance within a part-of-speech tagger
to that resulting from conventional deleted interpolation; we are unaware
of any evaluation of this technique on word n-gram models.

Another simple but quite successful smoothing method examined by
Chen and Goodman (1996) is the following. MacKay and Peto (1990) argue
for a smoothed distribution of the form:

C(Wi—n+1 -+ * Wi) + &Pyp (Wi Win+2 - * - Wi-1)
CWi—ns1 - - Wi-1) + &

where « represents the number of counts added, in the spirit of Lid-

stone’s law, but distributed according to the lower order distribution.

(1 = Awgpenyin) =

Puvp (Wi | Wi—ns1 - » Wi-1) =

(6.25)

6.3.5

6.3 Combining Estimators 223

Model Cross-entropy Perplexity

Bigram 7.98 bits 252.3
Trigram 7.90 bits 239.1
Fourgram 7.95 bits 247.0

Table 6.10 Back-off language models with Good-Turing estimation tested on
Persuasion.

Chen and Goodman (1996) suggest that the number of added counts
should be proportional to the number of words seen exactly once, and
suggest taking:

o=y (N1(Wi—ps1 -+ - Wi—1) + B)

where Ny (Wi—ns1 « - - Wiz1) = [{Ws : C(Wj_n41 - - - ;) = 1}], and then opti-
mizing f and y on held out data.

Kneser and Ney (1995) develop a back-off model based on an exten-
sion of absolute discounting which provides a new more accurate way of
estimating the distribution to which one backs off. Chen and Goodman
(1998) find that both this method and an extension of it that they propose
provide excellent smoothing performance.

Language models for Austen

With the introduction of interpolation and back-off, we are at last at the
point where we can build first-rate language models for our Austen cor-
pus. Using the CMU-Cambridge Statistical Language Modeling Toolkit
(see the website) we built back-off language models using Good-Turing
estimates, following basically the approach of Katz (1987).14 We then
calculated the cross-entropy (and perplexity) of these language models
on our test set, Persuasion. The results appear in table 6.10. The esti-
mated probabilities for each following word, and the n-gram size used to
estimate it for our sample clause is then shown in table 6.11. Our prob-
ability estimates are at last pleasingly higher than the unigram estimate
with which we began!

While overall the trigram model outperforms the bigram model on the
test data, note that on our example clause, the bigram model actually as-

14. The version of Good-Turing smoothing that the package implements only discounts
low frequencies - words that occurred fewer than 7 times.

224 6 Statistical Inference: n-gram Models over Sparse Data
P(shelh) P(waslh) P(inferiorlh) P(tolh) P(bothlh) P(sisters|h) [Product
Unigram 0.011 0.015 0.00005 0.032 0.0005 0.0003 | 3.96x 10717
Bigram 0.00529 0.1219 0.0000159 0.183 0.000449 0.00372 3.14 x 10715
n used 2 2 1 2 2 2
Trigram 0.00529 0.0741 0.0000162 0.183 0.000384 0.00323 1.44 x 10715
n used 2 3 1 2 2 2 t

6.4

Table 6.11 Probability estimates of the test clause according to various lan-
guage models. The unigram estimate is our previous MLE unigram estimate. The
other two estimates are back-off language models. The last column gives the
overall probability estimate given to the clause by the model.

signs a higher probability. Overall, the fourgram model performs slightly
worse than the trigram model. This is expected given the small amount
of training data. Back-off models are in general not perfectly successful
at simply ignoring inappropriately long contexts, and the models tend to
deteriorate if too large n-grams are chosen for model building relative to
the amount of data available.

Conclusions

A number of smoothing methods are available which often offer similar
and good performance figures. Using Good-Turing estimation and linear X
interpolation or back-off to circumvent the problems of sparse data rep-
resent good current practice. Chen and Goodman (1996, 1998) present
extensive evaluations of different smoothing algorithms. The conclusions
of (Chen and Goodman 1998) are that a variant of Kneser-Ney back-
off smoothing that they develop normally gives the best performance.
It is outperformed by the Good-Turing smoothing method explored by
Church and Gale (1991a) when training bigram models on more than 2
million words of text, and one might hypothesize that the same would
be true of trigram models trained on a couple of orders of magnitude.
more text. But in all other circumstances, it seems to perform as well or
better than other methods. While simple smoothing methods may be ap-
propriate for exploratory studies, they are best avoided if one is hoping
to produce systems with optimal performance. Active research continues
on better ways of combining probability models and dealing with spars

data.

6.5

6.6

6.5 Further Reading 225

Further Reading

Important research studies on statistical estimation in the context of lan-
guage modeling include (Katz 1987), (Jelinek 1990), (Church and Gale
1991a), (Ney and Essen 1993), and (Ristad 1995). Other discussions of es-
timation techniques can be found in (Jelinek 1997) and (Ney et al. 1997).
Gale and Church (1994) provide detailed coverage of the problems with
“adding one.” An approachable account of Good-Turing estimation can
be found in (Gale and Sampson 1995). The extensive empirical compar-
ison of various smoothing methods in (Chen and Goodman 1996, 1998)
are particularly recommended.

The notion of maximum likelihood across the values of a parameter
was first defined in (Fisher 1922). See (Ney et al. 1997) for a proof that
the relative frequency really is the maximum likelihood estimate.

Recently, there has been increasing use of maximum entropy methods
for combining models. We defer coverage of maximum entropy models
until chapter 16. See Lau et al. (1993) and Rosenfeld (1994, 1996) for
applications to language models.

The early work cited in section 6.2.2 appears in: (Lidstone 1920), (John-
son 1932), and (Jeffreys 1948). See (Ristad 1995) for discussion. Good
(1979: 395-396) covers Turing’s initial development of the idea of Good-
Turing smoothing. This article is reprinted with amplification in (Britton
1992).

Exercises

Exercise 6.1 [* %]

Explore figures for the percentage of unseen n-grams in test data (that differs
from the training data). Explore varying some or all of: (i) the order of the model
(i.e., n), (ii) the size of the training data, (iii) the genre of the training data, and
(iv) how similar in genre, domain, and year the test data is to the training data.

Exercise 6.2 [*]

As a smaller example of the problems with Laplace’s law, work out probability
estimates using Laplace’s law given that 100 samples have been seen from a
potential vocabulary of 1000 items, and in that sample 9 items were seen 10
times, 2 items were seen 5 times and the remaining 989 items were unseen.

