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Why?

Language technologies are designed to accomplish particular tasks, and as 
developers of these technologies, we need a way to measure their ability to 
satisfactorily perform the tasks for which they have been designed.

Of course, this is not the only factor which determines success. We may may also be 
interested in:

● cost, efficiency, scalability, compatibility,
● fault-tolerance,
● legal or ethical concerns, 
● etc.



Outline for today

● The typology of evaluation (after Resnik & Lin 2010)
● Some common evaluation metrics
● Out-of-sample evaluation
● System comparison
● Performance bounds



The typology of 
evaluation



Local outline

● automatic vs. manual evaluation,
● formative vs. summative evaluation,
● intrinsic vs. extrinsic evaluation, and
● component vs. end-to-end evaluation.



Automatic vs. manual evaluation

Arguably, the most natural way to evaluate a system is to ask humans to assess its 
performance on some task. Such manual evaluations are considered the gold 
standard for certain tasks. Unfortunately, they may be often slow and/or expensive, 
and may pose substantial experimental design challenges.

Automatic evaluations depend on evaluation metrics which can be computed without 
further human intervention. Even when manual evaluations are the gold standard for 
a task, automatic "understudy" evaluation metrics enable rapid development.



Formative vs. summative evaluation

Formative evaluations compare a system's current performance to other (e.g., earlier) 
iterations of that system. They can be used to

● measure development progress,
● perform feature ablation, or
● optimize hyperparameters.

Summative evaluations compare competing systems.



"When the cook tastes the soup, 
that's formative; when the 

customer tastes the soup, that's 
summative."

(Resnik & Lin 2010: 274)
 



Intrinsic vs. extrinsic evaluation

Intrinsic evaluations measures a system's performance on the immediate task for 
which it is designed.

Extrinsic evaluations measure a system's contributions to some external (or 
downstream) task.



Component vs. end-to-end evaluation

Many language technologies consist of a "pipeline" of several interacting 
components. For example, a parser may depend on a part-of-speech tagger, which 
depends on a word tokenizer, which depends on a sentence boundary detector...

Component evaluations consider each component of the pipeline separately. 

End-to-end evaluations focus on the final output of the pipeline.



Natural affinities

Resnik & Lin claim there are natural affinities between automated, formative, and 
intrinsic evaluations, and between manual, summative, and extrinsic evaluations.

For instance, an automatic "understudy" evaluation used to enable rapid system 
development is also a formative evaluation.

I would add that end-to-end evaluations and extrinsic evaluations are closely related.



Some common 
evaluation metrics



Local outline

For some types of tasks, like

● unstructured classification,
● structured classification, and
● sequence generation, 

the choice of metric is clear. For others, it is governed by convention.



Unstructured classification metrics

accuracy: the percentage (or, the MLE probability) of correct classification.

For binary classification, there are many other possibilities.



The information retrieval contingency table

True False

True True positive (TP) False positive (FP)

False False negative (FN) True negative (TN)



Information retrieval metrics (1/)

The percentage of retrieved documents which are relevant is known as precision (or 
positive predictive value).

P = TP / (TP + FP)

The percentage of relevant documents which are successfully retrieved is known as 
recall (or sensitivity, or true positive rate):

R = TP / (TP + FN)

Precision fails to penalize false negatives; recall fails to penalize false positives.



Information retrieval metrics (2/)

To quantify the tradeoff between the two, it is common to use the harmonic mean of 
precision and recall, the F-score (or F-measure):

F = (2 × P × R) / (P + R)

NB: the harmonic mean of two positive numbers is always closer to smaller of the 
two, so if you want to maximize F-score, you should work harder on the lesser term.



Problem

Compute accuracy, precision, recall, and F-score for the following contingency table:

A = (TP + TN) / (TP + TN + FP + FN)
P = TP / (TP + FP)
R = TP / (TP + FN)
F = (2 × P × R) / (P + R)

True False

True 10 2

False 5 20



Solution

Compute accuracy, precision, recall, and F-score for the following contingency table:

A = .812
P = .666
R = .833
F = .741

True False

True 10 2

False 5 20



Precision and recall

http://en.wikipedia.org/wiki/Precision_and_recall


Structured classification metrics

For tasks that extract "chunks" (like chunking, named entity recognition, etc.):

Artists on its roster include [Hannah Diamond]per , [GFOTY]per , [Life Sim]org , and 
[Danny L Harle]per .

it is common to evaluate using the F-score over the retrieved chunks.

An implementation of this is included in the nltk.chunk API.



Sequence prediction metrics

For tasks that involve generating sequences of arbitrary length, it is common to use 
metrics based on edit distance (or Levenshtein distance), which counts the minimum 
number of "edits" (insertions, deletions and optionally, substitutions) needed to map 
the predicted sequence onto the ground truth sequence.

When edit distance is scaled by dividing edit distance by the length of the ground 
truth sequence, it is called label error rate (or word error rate, phoneme error rate, 
character error rate etc.).



Flexible Levenshtein 
distance in Python

https://gist.github.com/kylebgorman/8034009
https://gist.github.com/kylebgorman/8034009


Task-specific metrics

Certain tasks conventionally are evaluated using complex, task-specific metrics. E.g.:

● Labeled attachment accuracy (LAS), a metric for dependency parsing
● PARSEVEL, a metric for constituency parsing
● BLEU, an understudy metric for machine translation
● ROUGE, an understudy metric for automated summarization



Combined metrics

For some tasks, additional metrics can be created by propagating (or otherwise 
combining) low-level predictions to higher-level representations. E.g.:

● For POS tagging, we can derive sentence accuracy from token accuracy.
● For grapheme-to-phoneme conversion, we can derive word error rate from 

phoneme error rate.



Out-of-sample evaluation



Out-of-sample evaluation

Insofar as our goal is to measure generalization, it is essential that an evaluation be 
performed using disjoint training and test sets.

Evaluations performed on the training set—resubstitution evaluation—massively 
overestimates system performance.



"In its purest form…the test data 
should remain entirely untouched  and 
unseen by the researcher or developer 

until system development is frozen 
just prior to evaluation."
(Resnik & Lin 2010: 278)



Notation

● G is the ground truth data
● S is a system with arbitrary parameters and hyperparameters
● 𝓜 is an evaluation metric, a function with domain G × S

WLOG, we assume that higher values of 𝓜 indicate better performance.



Static partitioning

G is partitioned* into:

● Training set Gtrain
● Test (evaluation) set Gtest

During training, we set the parameters of S so as to maximize 𝓜(Gtrain, S).

The figure of merit for S is then given by 𝓜(Gtest, S).

*This may be a random split or conventionalized standard split.



Static partitioning with a development set

...

● Training set Gtrain
● Development (tuning) set Gdev
● Test (evaluation) set Gtest

Set the parameters of S so as to maximize 𝓜(Gtrain, S) and the hyperparameters of S 
so as to maximize 𝓜(Gdev, S).

...



k-fold cross-validation

Instead of a single point estimate of 𝓜, we draw k estimates 𝓜1 … 𝓜k.

G is partitioned into k "folds" such that Gi indicates the ith fold. Then for i = {1..k}:

● Let Gtest = Gi and Gtrain = G − Gi
● Set the parameters of S so as to maximize 𝓜(Gtrain, S)
● Let 𝓜i = 𝓜(Gtest, S)

These estimates can then be aggregated statistically (e.g., with median or range).

When k is the number of samples, this is called leave-one-out (LOO) cross-validation.



k-fold cross-validation with a development set

...

Then for i = {1..k}:

● Let Gtest = Gi, Gdev = Gi − 1, and Gtrain = G − {Gtest, Gdev}
● Set the parameters of S so as to maximize 𝓜(Gtrain, S) and the hyperparameters 

of S so as to maximize 𝓜(Gdev, S) 
● Let 𝓜i = 𝓜(Gtest, S)

...



Rules of thumb

● Gtrain is 70-80% of the labeled data
● Gdev and Gtest are roughly the same size



The development-test set

In some formal settings (certain shared tasks, Kaggle competitions) a 
development-test (or devtest) set is held out for formative evaluations during system 
development before the test set has been made available.

https://www.kaggle.com/


System comparison



The standard system ranking procedure

Let S1 and S2 be systems trained as above, and let 𝓜1 and 𝓜2 be the associated 
figures of merit. Then we prefer S1 to S2 if and only if 𝓜1 > 𝓜2.



Problems with the standard ranking procedure

It treats 𝓜 as an exact quantity instead of an estimate of a random variable. This 
may lead to Type I error, the error of falsely rejecting the null hypothesis that the 
systems being compared are equivalent.

In fact, many evaluation metrics have a known statistical distribution.



Review: the binomial distribution

B(n, p) is a discrete probability distribution over the number of successes of n 
independent binary experiments which probability of success p.



A statistical model of relative accuracy (1/)

Let x be a Bernoulli random variable which takes on the value 1 when a test sample is 
correctly classified and 0 otherwise.

Then, accuracy is the maximum likelihood estimate of p = P(x = 1) for a binomial 
random variable B(N, p) where N is the number of test samples.

We can also compute variance, confidence intervals (Wilson 1927), etc.



A statistical model of relative accuracy (2/)

Now let x1>2 be a Bernoulli random variable which has value 1 just when S1 correctly 
classifies a test sample that S2 misclassifies.

Then, there is a corresponding binomial random variable B(n, p) where p = P(x1>2 = 1) 
and n is the number of test samples on which S1 correctly classifies a sample that S2 
misclassifies or vice versa.

McNemar's test (Gillick & Cox 1989) adopts the null hypothesis that p = .5.*

*Normally, we use the two-sided, "mid-p" variant.



Other reference distributions

Many other common metrics and comparisons can be mapped onto known 
statistical distributions, and for those which cannot, a reference distribution can be 
estimated with bootstrap resampling.



Yet...

Dror et al. (2018) survey statistical practices in all long papers presented at the 2017 
meeting of the ACL, and in that year's volume of Transactions of the ACL. They find:

● the majority of works do not use statistical tests for system comparison;
● many of those which do, do not use appropriate statistical tests; and
● many of those which do, do not report the test(s) used.

This is a chance to distinguish yourself.



Performance bounds



Inter-annotator 
agreement handout



Oracle upper bound

Another type of upper bound is provided by constructing an oracle system which has 
access to ground truth labels during inference.

Imagine we are doing a system comparison of several part-of-speech taggers. 
There are various ways we might combine these taggers to create an ensemble 
tagger. There is no foolproof way to select from amongst the predictions of the 
systems that make up the ensemble…

...except by using the ground truth labels. The oracle ensemble predicts the 
correct tag so long as at least one of the taggers in the ensemble does.



Baseline lower bounds

It is often desirable to compute a baseline lower bound.

For formative evaluations of unstructured classification tasks, one common absolute 
baseline is a model which predicts the most common label for every example.

For summative evaluations, a tighter baseline is obtained from prior models, or prior 
literature that reports results on the same data set.



2x2 contingency
table tutorial

http://www.wellformedness.com/blog/a-tutorial-on-contingency-tables/
http://www.wellformedness.com/blog/a-tutorial-on-contingency-tables/


Final thoughts

● An ideal metric has lots of headroom; it becomes less informative near ceiling
● From an machine learning perspective, it is good for there to be a close 

connection between the training objective and the metric
● From an evaluation perspective, this is much less clear; it tends to expose the 

limitations and corner cases of the metric.


