
Finite-state acceptors
LING83800

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Outline

• Motivations
• State machines
• Formalization
• OpenFst and friends
• Demo

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Motivations

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Kleene 1956

Initially, the study of
• abstract computational devices known as state machines and
• formal languages

were considered independent of one another. Kleene (1956) was one of
the first to unify these two areas of study. Kleene wished to characterize
the properties of nerve nets (McCulloch and Pitts, 1943), a primitive form
of artificial neural network. In doing so, Kleene introduced the regular
languages and established strong connections between regular languages
and the finite acceptors, a type of state machine.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Regular languages in the 20th century

• Regular languages were popularized in part by discussion of the
Chomsky(-Schützenberger) hierarchy (e.g., Chomsky and Miller, 1963).

• Regular languages were used by Thompson (1968) to create the
grep regular expression matching utility.

• Finite acceptors are used to compactly store morphological
dictionaries.

• Finite acceptors are used to compactly represent language models,
particularly in speech recognition engines.

It now seems that an enormous amount of linguistically-interesting
phenomena can be described in terms of regular languages (and the
closely-related rational relations, which we’ll review next week).

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Negative results

At the same time, there were two important negative results:
• Syntactic grammars belong to a higher-classes of formal languages,

the mildly context-sensitive languages (Vijay-Shanker et al., 1987).
• The class of regular languages are not “learnable” from positive data

under Gold’s (1967) notion of language identification in the limit.

In practice, this means that regular languages and finite acceptors are
somewhat limited as models of syntax, though they are still well-suited
as models of phonology and morphology.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Introducing state machines

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


State machines

A state machine is hardware or software whose behavior can be described
solely in terms of a set of states and arcs, transitions between those
states. In this formalism, states roughly correspond to “memory” and arcs
to “operations” or “computations”. A finite-state machine is merely a
state machine with a finite, predetermined set of states and labeled arcs.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


As directed graphs

State machines are examples of what computer scientists call directed
graphs. These are “directed” in the sense that the existence of an arc
from state q to state r does not imply an arc from r to q. In state
diagrams, we indicate this directionality using arrows.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


(image: credit: Wikimedia Commons)

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


The humble gumball machine

One familiar example of a state machine—encoded in hardware, rather
than software—is the old-fashioned gumball machine. Each state of the
gumball machine is associated with actions such as

• turning the knob,
• inserting a coin, or
• emitting a gumball.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Formalization

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Sets

A set is an abstract, unordered collection of distinct objects, the members
of that set. By convention capital Italic letters denote sets and lowercase
letters to denote their members. Set membership is indicated with the ∈
symbol; e.g., x ∈ X is read “x is a member of X”. The empty set is denoted
by ∅.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Subsets

A set X is said to be a subset of another set Y just in the case that every
member of X is also a member of Y. The subset relationship is indicated
with the ⊆ symbol; e.g., X ⊆ Y is read as “X is a subset of Y”. Every set is a
subset of itself; e.g., X ⊆ X.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Union and intersection

• The union of two sets, X ∪ Y, is the set that contains just those
elements which are members of X, Y, or both.

X ∪ Y = {x | x ∈ X ∨ x ∈ Y}
• The intersection of two sets, X ∩ Y, is the set that contains just those

elements which are members of both X and Y.

X ∩ Y = {x | x ∈ X ∧ x ∈ Y}

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Strings

Let Σ be an alphabet (i.e., a finite set of symbols). A string (or word) is any
finite ordered sequence of symbols such that each symbol is a member of
Σ. By convention typewriter text is used to denote strings. The empty
string is denoted by ϵ (epsilon). String sets are also known as languages.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Concatenation and closure

• The concatenation of two languages, X Y, consists of all strings
formed by concatenating a string in X with a string in Y.

X Y = {xy | x ∈ X ∧ y ∈ Y}
• The closure of a language, X∗, is an infinite language consisting of

zero or more “self-concatenations” of X with itself.

X∗ ={ϵ} ∪ X1 ∪ X2 ∪ X3 . . .

={ϵ} ∪ X ∪ XX ∪ XXX . . .

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Regular languages

• The empty language ∅ is a regular language.
• The empty string language {ϵ} is a regular language.
• If s ∈ Σ, then the singleton language {s} is a regular language.
• If X is a regular language, then its closure X∗ is a regular language.
• If X, Y are regular languages, then:

• their concatenation XY is a regular language, and
• their union X ∪ Y is a regular language.

• Other languages are not regular languages.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Cross-product

A pair or two-tuple is a sequence of two elements; e.g., (a, b) is the pair
consisting of a then b. The cross-product (or Cartesian product) of two
sets, X × Y, is the set that contains all pairs (x, y) where x is an element
of X and y is an element of Y.

X × Y = {(x, y) | x ∈ X ∧ y ∈ Y}

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Relations

A (two-way or binary) relation over sets X and Y is a subset of the
cross-product X × Y. By convention lowercase Greek letters indicate
relations, and the domain—set of inputs—and range—the set of
outputs—are usually provided upon first definition. For example, the “less
than” relation might be written λ ⊆ Ò ×Ò = {(x, y) | x < y} where Ò is
the set of real numbers.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Functions

A function is a relation for which every element of the domain is
associated with exactly one element of the range.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Problem

Let Ò be the set of real numbers, and Î be the set of natural numbers.
Then, are the following relations functions?

• The “less than” relation λ ⊆ Ò ×Ò = {(x, y) | x < y}?
• The “successor” relation σ ⊆ Î × Î = {(x, x + 1) | x ∈ Î}?

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Solution

• λ is not a function because there are an infinitude of real numbers
that are greater than any other real number.

• σ is a function because each natural number has just one successor.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


N-ary relations

Three-, four- and five-way relations, and so on, are all well-defined,
though there is no such generalization for functions, since n-way
relations where n > 2 lack well-defined domain and range. However, one
can redefine any n-way relation into a two-way relation by grouping the
various sets into domain and range; for instance, a four-way relation over
A × B × C × D can be redefined as a two-way relation (and possibly, a
function) with domain A × B and range C × D.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Application

The application of an input argument to a relation or function is indicated
using square brackets. For instance given the successor function σ , then
σ [3] = {4} because (3, 4) ∈ σ .

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Finite-state acceptors

An finite-state acceptor (FSA) is a 5-tuple defined by:
• a finite set of states Q,
• a start or initial state s ∈ Q,
• a set of final or accepting states F ⊆ Q,
• an alphabet Σ, and
• a transition relation δ ⊆ Q × (Σ ∪ {ϵ}) × Q.

Note that, as formalized here, there is exactly one start state but may be
multiple final states, and that the start state may also be a final state.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Acceptance

An FSA is said to accept, match, or recognize a string if there exists a path
from the initial state to some final state, and the labels of the arcs
traversed by that state correspond to the string in question. The set of all
strings so accepted are called the FSA’s language.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Paths

Given two states q, r ∈ Q and a symbol z ∈ Σ ∪ {ϵ}, (q, z, r) ∈ δ implies
that there is an arc from state q to state r with label z. A path through a
finite acceptor is a pair of

• a state sequence q1, q2, . . . , qn ∈ Qn and a
• a string z1, z2, . . . , zn ∈ (Σ ∪ {ϵ})n,

subject to the constraint that [i ∈ [1, n] : (qi, zi, qi+1) ∈ δ ; that is, there
exists an arc from qi to qi+1 labeled zi.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Complete paths

A path is said to be complete if
• (s, z1, q1) ∈ δ and
• qn ∈ F.

That is, a complete path must also begin with an arc from the initial state
s to q1 labeled z1 and terminate at a final state. Then, an FSA accepts
string z ∈ (Σ ∪ {ϵ})∗ if there exists a complete path with string z.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Kleene’s theorem

Kleene’s theorem holds that any regular language is accepted by an FSA,
and any language accepted by an FSA is a regular language. This implies
that because regular languages are closed under closure, concatenation,
and union, so are FSAs.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Reading the state diagrams

• States are indicated by circles.
• The initial state is indicated by a bold circle.
• Final states are indicated by double-struck circles.
• Labeled arrows indicate arcs.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


{aab}

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


{a}+

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


{a}({b} ∪ {c})

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


{ba}{a}+

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


The sheep language

• Q = {0, 1, 2, 3}
• s = 0
• F = {3}
• Σ = {a,b}
• δ = {(0,b, 1), (1,a, 2), (2,a, 3), (3,a, 3)}

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


All about ϵ

The ϵ symbol is a special one which does not match/consume any other
symbol. Every ϵ-FSA has an equivalent ϵ-free (or “e-free”) FSA that can be
found using the epsilon-removal algorithm (Mohri, 2002).

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Coming soon

• Next week we’ll introduce separate input and output labels,
introducing finite-state transducers (FSTs) and the rational relations
they model.

• In two weeks we’ll enrich FSAs and FSTs with weights, giving rise to
the weighted finite-state acceptors (WFSAs) and weighted finite-state
transducers (WFSTs), which allow us to assign probabilities to regular
languages and rational relations, respectively.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


OpenFst and friends

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


OpenFst (Allauzen et al., 2007)

OpenFst is a open-source C++17 library for weighted finite state
transducers developed at Google. Among other things, it is used in:

• Speech recognizers (e.g., Kaldi and many commercial products)
• Speech synthesizers (as part of the “front-end”)
• Input method engines (e.g., mobile text entry systems)

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


OpenFst design

There are (at least) four layers to OpenFst:
• A C++ template/header library in <fst/*.h>
• A C++ “scripting” library in <fst/script/*.{h,cc}>
• CLI programs in /usr/local/bin/*
• A Python extension module pywrapfst

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


OpenGrm

• Baum-Welch (Gorman et al., 2021; Gorman and Allauzen, 2024): CLI
tools and libraries for performing expectation maximization over
WFSTs

• NGram (Roark et al., 2012): CLI tools and libraries for building
conventional n-gram language models encoded as WFSTs

• Pynini (Gorman, 2016; Gorman and Sproat, 2021): Python extension
module for finite-state grammar development

• Thrax (Roark et al., 2012): DSL-based compiler for finite-state
grammar development

• SFst (Allauzen and Riley, 2018): CLI tools and libraries for building
stochastic FSTs

All the OpenGrm tools are built upon, and use the same file formats as,
OpenFst.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


Speech grammars at Google

Pynini is used extensively at Google for speech-oriented FST grammar
development, e.g.:

• Gorman and Sproat (2016) propose an algorithm—implemented in
Pynini—which can induce number name grammars from a
few-hundred labeled examples.

• Ritchie et al. (2019) describe how Pynini is used to build “unified”
verbalization grammars that can be share by both ASR and TTS.

• Ng et al. (2017) constrain a linear-model-based verbalizers with FST
covering grammars.

• Zhang et al. (2019) constrain RNN-based verbalizers with FST
covering grammars.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


More information

openfst.org
opengrm.org

baumwelch.opengrm.org
ngram.opengrm.org
pynini.opengrm.org
thrax.opengrm.org
sfst.opengrm.org

http://wellformedness.com/courses/LING83800/

openfst.org
opengrm.org
baumwelch.opengrm.org
ngram.opengrm.org
pynini.opengrm.org
thrax.opengrm.org
sfst.opengrm.org
http://wellformedness.com/courses/LING83800/


Demo

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


References I

C. Allauzen and M. Riley. Algorithms for weighted finite automata with
failure transitions. In Proceedings of the 23rd International Conference
on Implementation and Application of Automata, pages 46–58, 2018.

C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri. OpenFst: a
general and efficient weighted finite-state transducer library. In
Proceedings of the 12th International Conference on Implementation
and Application of Automata, pages 11–23, 2007.

N. Chomsky and G. A. Miller. Introduction to the formal analysis of natural
languages. In R. D. Luce, R. R. Bush, and E. Galanter, editors, Handbook
of Mathematical Psychology, pages 269–321. Wiley, 1963.

E. M. Gold. Language identification in the limit. Information and Control,
10(5):447–474, 1967.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


References II

K. Gorman. Pynini: a Python library for weighted finite-state grammar
compilation. In ACL Workshop on Statistical NLP and Weighted
Automata, pages 75–80, 2016.

K. Gorman and C. Allauzen. A* shortest string decoding for
non-idempotent semirings. In Proceedings of the 18th Conference of the
European Chapter of the Association for Computational Linguistics,
2024.

K. Gorman and R. Sproat. Minimally supervised number normalization.
Transactions of the Association for Computational Linguistics, 4:507–519,
2016.

K. Gorman and R. Sproat. Finite-State Text Processing. Morgan & Claypool,
2021.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


References III

K. Gorman, C. Kirov, B. Roark, and R. Sproat. Structured abbreviation
expansion in context. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 995–1005, 2021.

S. C. Kleene. Representations of events in nerve nets and finite automata.
In C. E. Shannon and J. McCarthy, editors, Automata Studies, pages 3–42.
Princeton University Press, 1956.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5(4):115–133, 1943.

M. Mohri. Generic epsilon-removal and input epsilon-normalization
algorithms for weighted transducers. International Journal of Computer
Science, 13(1):129–143, 2002.

A. H. Ng, K. Gorman, and R. Sproat. Minimally supervised
written-to-spoken text normalization. In IEEE Workshop on Automatic
Speech Recognition and Understanding, pages 665–670, 2017.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


References IV

S. Ritchie, R. Sproat, K. Gorman, D. van Esch, C. Schallhart, N. Bampounis,
B. Brard, J. F. Mortensen, M. Holt, and E. Mahon. Unified verbalization for
speech recognition & synthesis across languages. In Proceedings of
INTERSPEECH, pages 3530–3534, 2019.

B. Roark, R. Sproat, C. Allauzen, M. Riley, J. Sorensen, and T. Tai. The
OpenGrm open-source finite-state grammar software libraries. In
Proceedings of the ACL 2012 System Demonstrations, pages 61–66, 2012.

K. Thompson. Programming techniques: regular expression search
algorithm. Communications of the ACM, 11(6):419–422, 1968.

K. Vijay-Shanker, D. J. Weir, and A. K. Joshi. Characterizing structural
descriptions produced by various grammatical formalisms. In 25th
Annual Meeting of the Association for Computational Linguistics, pages
104–111, 1987.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/


References V

H. Zhang, R. Sproat, A. H. Ng, F. Stahlberg, X. Peng, K. Gorman, and
B. Roark. Neural models of text normalization for speech applications.
Computational Linguistics, 45(2):293–337, 2019.

http://wellformedness.com/courses/LING83800/

http://wellformedness.com/courses/LING83800/

	References

