Formal languages II: sub- and super-regular languages

LINGS83800

1 Introduction

The regular languages were one of the earliest formal language families to be characterized, but
they are by no means the only such family. (Indeed, there are in theory an unbounded number
of formal language families that one could characterize.)

There are several different ways one may characterize a formal language. The most common
characterization is algebraic (or “grammatical”), which is how we defined the regular languages
in the previous lecture, and how we will do so today. A second characterization is “automata-
theoretic”, or characterization in terms of the capacity of abstract computational devices; we
provide an automata-theoretic characterization of the regular languages in the following lecture.
A third type of characterization—which we won’t provide in this class—is “logical”; for instance,
every regular language corresponds to a definition in monadic second-order logic (Biichi 1960).

The four best-known formal languages form what’s known as the Chomsky hierarchy (Chom-
sky 1956). Formally, this is a containment hierarchy: each pair of languages are in a strictly
nesting superset/subset relationship such that

regular C context-free C context-sensitive C recursively enumerable.

gives further characterizationsf In practice—and with the benefit of decades of hindsight—
research in formal language theory, natural language processing, and linguistics focuses on two
additional classes, neither of which yet has an agreed-upon formal characterization:

« The subregular languages are a proper subset of the regular languages. The best-characterized
languages in this class are learnable in the limit from positive data (Gold 1967, Angluin 1980)
meaning that one can, under certain generous assumptions, determine the exact language
that generated a sample of strings.

« The mildly context-sensitive languages (MCSLs; Joshi [1985) are a proper subset of the context-
sensitive languages and proper superset of the context-free languages. They are informally
characterized by polynomial parsing: that is, one can efficiently solve the membership prob-
lem, i.e., determine whether or not a given string is a member of the language.

These two families figure heavily into linguists’ conjectures about the actual complexity of
human languages. The subregular languages were characterized in part in response to Gold’s

'Note there is no logical reason why formal languages ought to form a proper hierarchy, and indeed, some classes
of subregular languages do not nest with respect to other subregular classes.

Grammar Languages Recognition automaton

Type 3 regular finite-state automaton

Type 2 context-free pushdown automaton

Type 1 context-sensitive linear-bounded Turing machine
Type 0 recursively enumerable Turing machine

Table 1: Characterizations of the Chomsky hierarchy.

proof that the regular languages were not in learnable in the limit from positive data. Heinz and
colleagues (e.g., Heinz 2010) conjecture that all phonotactic and morphotactic patterns are char-
acterized by subregular languages learnable in the limit from positive data. Similarly, the mildly
context-sensitive languages were developed concurrently with Schieber’s (1985) demonstration
that one human language—Swiss German—is not CFL. Since the Swiss German pattern is MCSL,
it is conjectured that human languages are at most MCSL.

... C subregular C regular C context-free C

mildly context-sensitive C context-sensitive C recursively enumerable.

Bibliographic note

The definition of strictly-local languages is based on Jager and Rogers (2012). The definition of
context-free languages is loosely based on Jurafsky and Martin, in preparation, chap. 17, who in
turn draw from Hopcroft et al. 2006. Algorithms for parsing context-free grammars are covered
in later courses.

Software note

SigmaPieE (Aksénova 2020) is a Python toolkit for working with certain families of subregular
languages, including the strictly local languages. There are a huge number of libraries for context-
free grammar parsing; one well-known one is pyparsin g.E

2 Strictly local languages

A strictly local (SL) language is a proper subset of the subregular languages. A SL language is
parameterized by positive counting number £ and we may speak of the set of, e.g., SL3 languages.
It can be grammatically characterized either positively or negatively and these two character-
izations are equivalent (i.e., for every positive characterization there is an equivalent negative
characterization).

2https://github.com/alenaks/SigmaPie
Shttps://github.com/pyparsing/pyparsing/

https://github.com/alenaks/SigmaPie
https://github.com/pyparsing/pyparsing/

2.1 Positive characterization
2.1.1 Definitions

In the positive characterization, an SL;, language is defined by a finite set of k-factors, substrings
(i.e., n-grams) of length k. More formally, an SL grammar is a tuple 3, *, $, K such that:

« X a set of terminal symbols

" is the left boundary symbol

$ is the right boundary symbol

K is a set of k-factors, each of one of the following three forms:

— Yk
_ /\Zk—l
- Tl

2.1.2 The membership problem

To determine whether a string is a member of an SL language, one simply has to check whether
all of its k-factors are members of K. For example, if the string in question is 574 and one wants
to test whether it is a member of an SL, grammar, then one must consider each of this string’s
2-factors: "3, 37,76, 0$H The string is a member of the corresponding SL language if and only if
each of these factors are present in the grammar’s set of k-factors (i.e., if K’ C K). Similarly, if
the grammar is an SL3 grammar, we would check k-factors of the string "3, .. ., and so on.

Problem Given a (positive) SL grammar where > = {a,b, c} and K = {"a, aa, ab,bb, b$},
give one string of length 5 which is a member of the corresponding language, and one string of
length 6 which is not.

2.2 Negative characterization
2.2.1 Definitions

In the negative characterization, K is simply a set of disallowed k-factors, of the same three
forms as in the positive characterization.

Problem Let X = {C,V} where these stand for consonants and vowels, respectively. Give a
negative characterization of the so-called “strict CV” languages, those where every syllable is of
the shape CV (e.g., CV, CVCV, etc.). State the minimal £ and give all negative k-factors.

*Note that one “hallucinates” an initial * and a final § for each candidate string. We will see a similar hallucination
of boundary symbols when we formalize rewrite rules in a few weeks.

2.2.2 The membership problem

With this negative characterization, a string is the member of the corresponding SL language if
and only if none of the k-factors is present in the string.

2.3 Non-equivalence

It is possible to conceive of regular languages which are not SL for any finite k. For instance,
a language of the form ¥* 33", a language which requires that 5 occurs at least once, is not SL,
because this condition cannot be positively or negatively characterized in terms of finite k-factors.

2.4 Applications

The SL languages have been used to characterize many linguistic patterns, including stress (Rogers
et al! 2013), morphotactics (Aksénova and De Santg 2018), and elements of syntax and semantics
(e.g., Graf 2022).

3 Context-free languages

A context-free language (CFL) is a language characterized by a context-free grammars (CFGs), a for-
malization of the phrase structure grammars of traditional grammar. The formalism is originally
due to Chomsky (1956) though it has been independently discovered several times. The insight
underlying CFGs is the notion of constituency: that strings are generated by nested phrases.

3.1 Definitions
A CFG is a four-tuple N, >, R, S such that:

« N is a set of non-terminal symbols, corresponding to phrase markers in a syntactic tree.
« Y is a set of terminal symbols, corresponding to words (i.e., X’s) in a syntactic tree.

« R is a set of production rules. These rules are of the form A — [where A € N and
B € (X U N)*. Thus A is a phrase label and [is a sequence of zero or more terminals
and/or non-terminals.

+ S € N is a designated start symbol (i.e., the highest projection in a sentence).

For simplicity, we assume /N and ¥ are disjoint. As is standard, we use Roman uppercase charac-
ters to represent non-terminals and Greek lowercase characters to represent terminals.

3.2 The membership problem

To determine whether or not a string is a member of a context-free language, one has to determine
whether that string can be derived—in a sense to be made precise below—by that language’s
grammar. Direct derivation describes the relationship between the input to a single grammar rule
in R and the resulting output. If there is a rule A — [in R, and «, 7y are strings in (X U N)*,
then aw A~y directly derives a/3:

aAy = afy.

Derivation is a generalization of direct derivation which allows one to iteratively apply rules to
strings. Given strings a1, as, a,,, € (X U N)* such that oy = ag, and ap = g, ..., A1 = i,
then

*
a1 = Oy,

i.e., ay derives o, (and oy also derives s, g, etc.). A string is a member of the CFL L if it can
be derived by G, starting from the start symbol S, and, the (possibly infinite) language L is the
set of strings that can be so derived.

Problem Enumerate the language generated by a CFG with the following rules:

S— NPVP

VP -V NP

VP =V

NP — DIT' NN
NP — Kyle
DT — a | the
NN — cat | dog

V — barks | bites

3.3 Non-equivalence

Speaking informally, regular languages are able to “count” up to a certain counting number. For
instance, a regular language can require that any string in the language contain exactly n a’s, no
more than m b’s, or between m and n c’s. But as Jager and Rogers put is, “no regular grammar
is able to count two sets of symbols and compare their size if their size is potentially unlimited”
(p. 1959)8 However, context-free languages can do exactly this sort of unbounded comparison,
and this is one example of how they are a proper superset of the regular languages. One intuitive

°One can formally prove that a language (like 3™~™) is non-regular using a technique known as the pumping
lemma; see Hopcroft et all 2006:§4.1 for a demonstration.

explanation for this fact is that derivation rules in a regular grammar must be left-linear or right-
linear. That is, they are all of the form A — B »* (a left-linear rule) or A — >* B (a right-
linear rule). But CFGs allow additional types of rules, such as center-embedding rules of the form
A — [A ~. Imagine this rule is part of the following CFG:

S— A
A= B Ay
A— €

Intuitively this grammar derives the language 5"+" (where n is some non-negative integer). How-
ever, regular languages can only approximate this language (e.g., with 5*~*), but cannot “insist”
that the number of 8s and s match.

3.4 Chomsky-normal form

Syntacticians have long had a preference for binary branching syntactic structures, meaning that
each non-terminal node has at most two children. As it happens, this assumption greatly simpli-
fies parsing algorithms as well. One way this is enforced by converting grammars or treebanks
to a format known as Chomsky normal form (CNF; Chomsky 1963). In Chomsky normal form,
the elements of R, the set of production rules, are constrained to have one of two forms:

« A— B(C where A,B,C € N.
« A— fwhere A€ Nandf €.

In other words, the right-hand side of every rule either consists of two non-terminals or one
terminal. There exists for every CFG grammar a weakly equivalent CNF grammar, meaning that
there exists a CNF which generates the same language (though it does not necessarily assign
exactly the same phrase structure). For instance, given the rule A — B C' D, we can convert this
to two CNF rules, namely A — B X and X — C' D.

Problem Given the CFG rule M — X X p Y, where X,Y are non-terminals and A, p are
terminals, convert the rule into a series of CNF rules.

3.5 Applications

There exist relatively-efficient cubic-time recognition and parsing algorithms for CFGs. Nearly
all programming languages are described by—and parsed using—a CFGJ and CFG grammars of
human languages are widely used as a model of syntactic structure in natural language processing
and understanding tasks.

®Python programs are even described by a CFG (https://docs.python.org/3/reference/
grammar . html). When you execute a Python script, it is parsed using this grammar specification.

https://docs.python.org/3/reference/grammar.html
https://docs.python.org/3/reference/grammar.html

References
Aksénova, Aléna. 2020. Tool-assisted induction of subregular languages and mappings. Doctoral
dissertation, State University of New York at Stony Brook.

Aksénova, Aléna, and Aniello De Santo. 2018. Strict locality in morphological derivations. In
Proceedings of the Fifty-third Annual Meeting of the Chicago Linguistic Society, 1-12.

Angluin, Dana. 1980. Inductive inference of formal languages from positive data. Information
and Control 45:117-135.

Biichi, Julius Richard. 1960. Weak second order arithmetic and finite automata. Zeitschrift fiir
Mathematische Logik und Grundlagen der Mathematik 6:66-92.

Chomsky, Noam. 1956. Three models for the description of language. IRE Transactions on Infor-
mation Theory 3:113-124.

Chomsky, Noam. 1963. Formal properties of grammars. In Handbook of Mathematical Psychology,
ed. R. Duncan Luce, Robert R. Bush, and Eugene Galanter, 323-418. John Wiley & Sons.

Gold, E. Mark. 1967. Language identification in the limit. Information and Control 10:447-474.

Graf, Thomas. 2022. Subregular linguistics: bridging theoretical linguistics and formal grammar.
Theoretical Linguistics 48:145-184.

Heinz, Jeffrey. 2010. Learning long-distance phonotactics. Linguistic Inquiry 41:623-661.

Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman. 2006. Introduction to Automata Theory,
Languages, and Computation. Pearson, 3rd edition.

Joshi, Aravind K. 1985. Tree adjoining grammars: how much context-sensitivity is required to
provide reasonable structural descriptions? In Natural Language Parsing, ed. David R. Dowty,
Lauri Karttunen, and Arnold M. Zwicky, 206—-250. Cambridge University Press.

Jurafsky, Dan, and James H. Martin. In preparation. Speech and Language Processing. 3rd edition.

Jager, Gerhard, and James Rogers. 2012. Formal language theory: refining the Chomsky hierarchy.
Philosophical Transactions of the Royal Society B 367:1956—1970.

Rogers, James, Jeffrey Heinz, Margaret Fero, Jeremy Hurst, Dakotah Lambert, and Sean Wibel.

2013. Cognitive and sub-regular complexity. In International Conference on Formal Grammar,
90-108.

Schieber, Stuart M. 1985. Evidence against the context-freeness of natural languages. Linguistics
and Philosophy 8:333-343.

	Introduction
	Strictly local languages
	Positive characterization
	Definitions
	The membership problem

	Negative characterization
	Definitions
	The membership problem

	Non-equivalence
	Applications

	Context-free languages
	Definitions
	The membership problem
	Non-equivalence
	Chomsky-normal form
	Applications

