
Tooling

LING83800 1

Tooling

Tooling refers to software that helps one to develop other software. These include:

● tools for checking code style
● tools for enforcing code style
● tools for static type checking

The tools I'll talk about are all third-party tools available from Conda or PyPI (i.e.,
what pip downloads from). You can install all four with the following command:

conda install black isort flake8 mypy

2

Excursus: why do we care about code style?

● Code is written primarily to be read by humans, and only incidentally to be
executed by machines.
○ Human development time is, in general, far more costly than computer run time.

● Your code may be read by not just "current day" you, but also:
○ "the man": managers, advisors, recruiters, funders, investors, lawyers
○ colleagues and collaborators
○ you, in the future

● "Good" style can be inscrutable; what we really want is a sensible, "consistent"
style that minimizes the cognitive load of human readers (including future you).

3

Two types of tooling

● Some tools fix style violations
● Other tools simply point out style violations that we have to fix ourselves.

Usually we run the first kind of tool first, then the second.

4

PEP 8

PEP 8 is the official Python style guide.*

PEP 8 leaves some issues up to the developer, but more stringent style guides exist
(e.g., the Google Python Style Guide).

Various tools enforce or check PEP 8 compliance:

● reflowers ([[re[flow]]er]s not [re[flower]]s) wrap long (>80 character) lines
● linters and flakers check for style violations

*PEP stands for "Python Enhancement Proposal". Anyone can write a PEP, but they have to be implemented, and then
approved by a 2/3rd majority of the Python core developers before they're actually added to the language.

5

https://www.python.org/dev/peps/pep-0008/
https://google.github.io/styleguide/pyguide.html

black

PEP 8 mandates that no line should be longer than 79 characters.*

black is a command-line tool that automatically wraps lines, in an opinionated
(though, I think, quite nice looking) way.

$ black -l79 foo.py
reformatted foo.py
All done! ✨ 🍰 ✨
1 file reformatted.

 black works "in-place": it modifies the files it is run on.

*This allows us to have multiple terminals or text editor windows side by side. 6

Imports formatting

PEP 8 mandates the following form for imports:

● Wildcard imports (e.g., from foo import *) should be avoided, as they make
it unclear which names are present in the namespace.

import logging
import math

● Imports should be grouped in the following order:
a. Standard library imports (e.g., import math)
b. Related third party imports (e.g., import pynini, from scipy import stats)
c. Local application/library specific imports (e.g., from foo import bar)

7

isort

isort is a command-line tool that automatically sorts imports according to the PEP
8 recommendation.

$ isort split.py
Fixing /home/kbg/split.py

Like black, isort works "in-place": it modifies the files it is run on.

8

flake8

flake8 is a third-party command line tool that checks for, but does not fix, various
style issues (including those proscribed by PEP 8):

$ flake8 foo.py
foo.py:2:5: F841 local variable 'y' is assigned to but
never used

I find that nearly all flake8 issues are worth addressing. For instance, an assigned
but unused variable (as above) is usually indicative of a bug.

9

Excursus: Python typing (1/)

PEP 484 added the ability to decorate Python code with type signatures to support

● (human-readable) documentation
● static type checking

though these may ultimately be used to accelerate Python code execution someday.

10

https://www.python.org/dev/peps/pep-0484/

Excursus: Python typing (2/)

Types for ordinary variables, arguments to functions, and arguments to methods, are
given after the identifier name, with a preceding colon:

bar: int = 3 # This is unnecessary but harmless.

def foo(bar: int): ...

def bar(fast: bool = False): ...

11

Excursus: Python typing (3/)

The return type of a function or method is given after the signature, preceded by an
ASCII arrow (->) and followed by a colon:

def foo(bar: int) -> bool: ...

12

Excursus: Python typing (4/)

Types for instance variables (i.e., data stored within instances of a class) are given at
the top of the class declaration:

class Puppy:
 name: str
 wet_nose: bool

def __init__(self, name: str, wet_nose: bool = True):
 self.name = name
 self.wet_nose = wet_nose

...
13

Excursus: Python typing (5/)

Major types include:

● The placeholder type: Any
● Plain ole' data (POD) types: bool, int, float, str, bytes, None, etc.
● Polymorphic types: Union[T, U], Optional[T] (= Union[T, None])
● Containers: Counter[K], Dict[K, V], List[T], Tuple[T, U, ...], etc.
● Return type of generators: Iterator[T]
● Functions passed as arguments to other functions: Callable

14

https://docs.python.org/3/library/typing.html#typing.Callable

Excursus: Python typing (6/)

As of Python 3.9, one no longer needs to write

from typing import List

def product(x: List[T]) -> T: ...

as one one can instead write

def product(x: list[T]) -> T: ...

15

mypy

Static type checking tools inspect code and confirm that it is consistent with all
declared and/or inferred type signatures.

PEP 484 does not specify a static type checking tool, but one of the most widely
used ones is the command-line tool mypy:

$ mypy foo.py
Success: no issues found in 1 source file

16

Contents of: bar.py
def halve(x: int) -> int:
 return x / 2

17

$ mypy bar.py
bar.py:2: error: Incompatible return value type (got "float",
expected "int")
Found 1 error in 1 file (checked 1 source file)

18

Typing tips

● Add type signatures to all interfaces (functions, classes, and methods), but don't
bother with simple variables unless mypy asks you to.

● Some third-party libraries do not yet have typing signatures. Add:

import pandas # type: ignore

to silence mypy (etc.) warnings for that entire module.

19

Questions?

20

