
 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

23
 F

eb
ru

ar
y

20
23

Phil. Trans. R. Soc. B (2012) 367, 1956–1970

doi:10.1098/rstb.2012.0077
Research
* Autho

One con
computa
Formal language theory: refining the
Chomsky hierarchy

Gerhard Jäger1,* and James Rogers2

1Department of Linguistics, University of Tuebingen, Wilhelmstrasse 19, Tuebingen 72074, Germany
2Department of Computer Science, Earlham College, Richmond, IN, USA

The first part of this article gives a brief overview of the four levels of the Chomsky hierarchy, with a
special emphasis on context-free and regular languages. It then recapitulates the arguments why neither
regular nor context-free grammar is sufficiently expressive to capture all phenomena in the natural
language syntax. In the second part, two refinements of the Chomsky hierarchy are reviewed, which
are both relevant to the extant research in cognitive science: the mildly context-sensitive languages
(which are located between context-free and context-sensitive languages), and the sub-regular hierarchy
(which distinguishes several levels of complexity within the class of regular languages).

Keywords: formal language theory; complexity; artificial grammar learning
1. INTRODUCTION
The field of formal language theory (FLT)—initiated by
Noam Chomsky in the 1950s, building on earlier work
by Axel Thue, Alan Turing and Emil Post—provides a
measuring stick for linguistic theories that sets a mini-
mal limit of descriptive adequacy. Chomsky suggested
a series of massive simplifications and abstractions to
the empirical domain of natural language. (In particu-
lar, this approach ignores meaning entirely. Also, all
issues regarding the usage of expressions such as
their frequency, context dependence and processing
complexity are left out of consideration. Finally, it is
assumed that patterns that are productive for short
strings apply to strings of arbitrary length in an
unrestricted way. The immense success of this
framework—influencing not only linguistics to this
day but also theoretical computer science and, more
recently, molecular biology—suggests that these
abstractions were well chosen, preserving the essential
aspects of the structure of natural languages.1

An expression in the sense of FLT is simply a finite
string of symbols, and a (formal) language is a set of
such strings. The theory explores the mathematical
and computational properties of such sets. To begin
with, formal languages are organized into a nested
hierarchy of increasing complexity.

In its classical formulation [3], this so-called
Chomsky hierarchy has four levels of increasing com-
plexity: regular, context-free, context-sensitive and
computably enumerable languages. Subsequent work
in formal linguistics showed that this fourfold distinc-
tion is too coarse-grained to pin down the level of
complexity of natural languages along this domain.
r for correspondence (gerhard.jaeger@uni-tuebingen.de).

tribution of 13 to a Theme Issue ‘Pattern perception and
tional complexity’.

1956
Therefore, several refinements have been proposed.
Of particular importance here are the levels that
extend the class of context-free languages (CFLs)—
the so-called mildly context-sensitive languages—and
those that further delimit the regular languages—the
sub-regular hierarchy.

In this article, we will briefly recapitulate the
characteristic properties of the four classical levels of
the Chomsky hierarchy and their (ir)relevance to the
analysis for natural languages. We will do this in a
semi-formal style that does not assume any specific
knowledge of discrete mathematics beyond elementary
set theory. On this basis, we will explain the motivation
and characteristics of the mildly context-sensitive and
the sub-regular hierarchies. In this way, we hope to
give researchers working in artificial grammar learning
(AGL) an iron ration of FLT that helps them to relate
experimental work to formal notions of complexity.
2. THE CHOMSKY HIERARCHY
A formal language in the sense of FLT is a set of
sequences, or strings over some finite vocabulary S.
When applied to natural languages, the vocabulary is
usually identified with words, morphemes or sounds.2

FLT is a collection of mathematical and algorithmic
tools about how to define formal languages with finite
means, and how to process them computationally. It is
important to bear in mind that FLT is neither con-
cerned with the meanings of strings, nor with the
quantitative/statistical aspects such as the frequency or
probability of strings. This in no way suggests that
these aspects are not important for the analysis of sets
of strings in the real world—this is just not what FLT
traditionally is about (even though it is of course
possible to extend FLTaccordingly—see §7).

To be more specific, FLT deals with formal languages
(¼ sets of strings) that can be defined by finite means,
This journal is q 2012 The Royal Society

mailto:gerhard.jaeger@uni-tuebingen.de

Formal language theory G. Jäger and J. Rogers 1957

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

23
 F

eb
ru

ar
y

20
23

even if the language itself is infinite. The standard way to
give such a finite description is with a grammar. Four
things must be specified to define a grammar: a finite
vocabulary of symbols (referred to as terminals) that
appear in the strings of the language; a second finite
vocabulary of extra symbols called non-terminals; a
special designated non-terminal called the start symbol;
and a finite set of rules.

From now on, we will assume that when we refer to
a grammar G we refer to a quadruple kS,NT,S,Rl,
where S is the set of terminals, NT is the set of non-
terminals, S is the start symbol and R is the set of
rules. Rules have the form a! b, understood as ‘a
may be replaced by b’, where a and b are strings of
symbols from S and/or NT. Application of the rule
‘a! b’ to a string means finding a substring in
it that is identical to a and replacing that substring by b,
keeping the rest the same. Thus, applying ‘a! b’ to
xay produces xby.

G will be said to generate a string w consisting of
symbols from S if and only if it is possible to start
with S and produce w through some finite sequence
of rule applications. The sequence of modified strings
that proceeds from S to w is called a derivation of w.
The set of all strings that G can generate is called the
language of G, and is notated L(G).

The question whether a given string w is generated by
a given grammar G is called the membership problem. It is
decidable if there is a Turing machine (or an equivalent
device, i.e. a computer program running on a machine
with unlimited memory and time resources) that
answers this question with ‘yes’ or ‘no’ in finite time.
A grammar G is called decidable if the membership pro-
blem is decidable for every string of terminals of that
grammar. In a slight abuse of terminology, a language
is called decidable if it has a decidable grammar. A
class of grammars/languages is called decidable if and
only if all its members are decidable.

(a) Computably enumerable languages

The class of all languages that can be defined by some
formal grammar is called computably enumerable. It can
be shown that any kind of formal, algorithmic procedure
that can be precisely defined can also be expressed by
some grammar—be it the rules of chess, the derivations
of logic or the memory manipulations of a compu-
ter program. In fact, any language that can be defined
by a Turing machine (or an equivalent device) is
computably enumerable, and vice versa.

All computably enumerable languages are semi-
decidable. This means that there is a Turing machine
that takes a string w as input and outputs the answer
‘yes’ if and only if w is generated by G. If w is not
generated by G, then the machine either outputs a
different answer or it runs forever.

Examples of languages with this property are the set
of computer programs that halt after a finite number of
steps (simply compile the program into a Turing
machine and let it run, and then output ‘yes’ if the pro-
gram terminates), or the set of provable statements of
first-order logic. (A Turing machine can systematically
list all proofs of theorems one after the other; if the last
line of the proof equals the string in question: output
‘yes’; otherwise, move on to the next proof.)
Phil. Trans. R. Soc. B (2012)
(b) Context-sensitive languages

Context-sensitive grammars3 are those grammars
where the left-hand side of each rule (a) is never
longer than the right-hand side (b). Context-sensitive
languages are then the languages that can be defined
by some context-sensitive grammar. The definition of
this class of grammars immediately ensures a decision
procedure for the membership problem. Starting from
a string in question w, there are finitely many ways in
which rules can be applied backward to it. None of
the resulting strings is longer than w. Repeating this
procedure either leads to shorter strings or to a loop
that need not be further considered. In this way, it
can be decided in finite time whether w is derivable
from S.

Even though the question whether or not a given
string w is generated by a given context-sensitive gram-
mar G is in principle decidable, computing this answer
may be algorithmically so complex that it is, for
practical purposes, intractable.4

It should be noted that there are decidable
languages that are not context-sensitive (even though
they do not have any practical relevance in connection
with natural languages).

Examples of context-sensitive languages (that are not
context-free) are as follows (we follow the common nota-
tion where xi denotes a consecutive string of symbols
that contains exactly i repetitions of the string x):

— the set of all prime numbers (where each number n
is represented by a string of length n);

— the set of all square numbers;
— the copy language, i.e. the set of all strings over S

that consist of two identical halfs;
— anbmcndm;
— anbncn; and
— anbncnenf n.

(c) Context-free languages

In a context-free grammar, all rules take the form

A! b;

where A is a single non-terminal symbol and b is a
string of symbols.5 CFLs are those languages that
can be defined by a context-free grammar.

Here, the non-terminals can be interpreted as
names of syntactic categories, and the arrow ‘! ’
can be interpreted as ‘consists of ’. Therefore, the deri-
vation of a string x in such a grammar implicitly
imposes a hierarchical structure of x into ever larger
sub-phrases. For this reason, context-free grammars/
languages are sometimes referred to as phrase struc-
ture grammars/languages, and it is assumed that such
languages have an intrinsic hierarchical structure.

As hierarchical structure is inherent in many
sequential phenomena in biology and culture—from
problem solving to musical structure—context-free
grammars are a very versatile analytical tool.

It is important to keep in mind though that a CFL
(i.e. a set of strings) does not automatically come
equipped with an intrinsic hierarchical structure.
There may be several grammars for the same language
that impose entirely different phrase structures.

S

a S c db

a S c db

a c db

Figure 1. Phrase structure tree.

S

a d

b c

a d

b c

a d

b

T

S

T

S

T

c

Figure 2. Different phrase structure tree for the same string
as in figure 1.

1958 G. Jäger and J. Rogers Formal language theory

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

23
 F

eb
ru

ar
y

20
23

This point can be illustrated with the language
(ab)n(cd)n. A simple grammar for it has only two rules:

— S! abScd; and
— S! abcd.

The derivation for the string abababcdcdcd can suc-
cinctly be represented by the phrase structure tree
given in figure 1. In such a tree diagram, each local
tree (i.e. each node together with the nodes below it
that are connected to it by a direct line) represents
one rule application, with the node on top being the
left-hand side and the node on the bottom, the right-
hand side. The sequence that is derived can be read
off the leaves (the nodes from which no line extends
downwards) of the tree.

The same language can also be described by a
somewhat more complex grammar, using the rules:

— S! aTd;
— T! bSc; and
— T! bc.

According to this grammar, the phrase structure tree
for abababcdcdcd comes out as given in figure 2.

So both grammars impose a hierarchical structure
on the string in question, but these structures differ
considerably. It is thus important to keep in mind
that phrase structures are tied to particular grammars
and need not be intrinsic to the language as such.

Natural languages often provide clues about the
hierarchical structure of their sentences beyond
the plain linear structure. (Intonation, semantic
coherence, morphological agreement and relative
syntactic independence are frequently used criteria
for a sub-string to be considered a coherent hierar-
chical unit.) Therefore most linguists require a
grammar not just to generate the correct set of strings
to be adequate; rather, it must also assign a plausible
phrase structure.

The membership problem for CFLs is solvable in
cubic time, i.e. the maximum time that is needed to
decide whether a given string x belongs to L(G) for
some context-free grammar G grows with the third
power of the length of x. This means that there are
efficient algorithms to solve this problem.
Phil. Trans. R. Soc. B (2012)
Examples of (non-regular) CFLs are given in the
left column of table 1. Where appropriate, minimally
differing examples for a non-context-free language
(that are all context-sensitive) are given in the right
column for contrast.

(d) Regular languages

Regular languages are those languages that are defined
by regular grammars. In such a grammar, all rules take
one of the following two forms:

A! a;

A! aB:

Here, A and B denote non-terminal symbols and a a
terminal symbol.6

As regular grammars are also context-free, the non-
terminals can be seen as category symbols and the
arrow as ‘consists of ’. According to another natural
interpretation, non-terminals are the names of the
states of an automaton. The arrow ‘! ’ symbolizes
possible state transitions, and the terminal on the
right-hand side is a symbol that is emitted as a side
effect of this transition. The start symbol S designates
the initial state, and rules without a non-terminal on
the right-hand side represent transitions into the final
state. As there are finitely many non-terminals, a regular
grammar thus describes a finite state automaton (FSA).
In fact, it can be shown that each FSA can be transfor-
med into one that is described by a regular grammar
without altering the language that is being described.
Therefore, regular grammars/languages are frequently
referred to as finite state grammars/languages.

The membership problem for regular languages can
be solved in linear time, i.e. the recognition time grows
at most proportionally to the length of the string in
question. Regular languages can thus be processed
computationally in a very efficient way.

Table 2 gives some examples of regular languages
in the left column. They are contrasted to similar
non-regular (context-free) languages in the right
column (figure 3).

Table 1. Context-free and non-context-free languages

context-free languages non-context-free languages

mirror language copy language
(i.e. the set of strings xy over a

given S such that y is the
mirror image of x)

(i.e. the set of strings xx
over a given S such that
x is an arbitrary string of
symbols from S)

palindrome language
(i.e. the set of strings x that

are identical to their mirror
image)

anbn anbncn

anbmcmdn anbmcndm

well-formed programs of
Python (or any other high-

level programming
language)

Dyck language
(the set of well-nested

parentheses)

well-formed arithmetic
expression

Table 2. Regular and non-regular languages.

regular languages non-regular languages

anbm anbn

the set of strings x such that

the number of ‘a’s in x is a
multiple of 4

the set of strings x such

that the number of ‘a’s
and the number of ‘b’s in
x are equal

the set of natural numbers
that leave a remainder of 3

when divided by 5

{an: n is Gödel number of a Peano-
Theorem}

context-free

context-sensitive

type-0

a2
n

regular

anbn

anbm

Figure 3. Chomsky hierarchy.

Formal language theory G. Jäger and J. Rogers 1959

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

23
 F

eb
ru

ar
y

20
23

As the examples illustrate, regular grammars are
able to count up to a certain number. This number
may be arbitrarily large, but for each regular grammar
there is an upper limit for counting. No regular gram-
mar is able to count two sets of symbols and compare
their size if this size is potentially unlimited. As a
consequence, anbn is not regular.

The full proof of this fact goes beyond the scope of
this overview article, and the interested reader is
referred to the literature cited. The crucial insight
underlying this proof is quite intuitive though, and
we will provide a brief sketch.

For each regular grammar G, it is possible to con-
struct an algorithm (a FSA) that reads a string from
left to right, and then outputs ‘yes’ if the string
belongs to L(G), and ‘no’ otherwise. At each point in
time, this algorithm is in one of k þ 1 different states,
where k is the number of non-terminals in G. Suppose,
for a reductio ad absurdum, that L ¼ anbn is a regular
language, and let G* be a regular grammar that recog-
nizes L and that has k* non-terminals. Then the
corresponding recognition algorithm has k* þ 1 different
states. Now let i be some number more than k* þ 1.
According to the assumption, aibi belongs to L(G).
When the recognition algorithm reads in the sequence
Phil. Trans. R. Soc. B (2012)
of ‘a’s at the beginning of the string, it will visit the
same state for the second time after at most k* þ 1
steps. So a sequence of i consecutive ‘a’s will be indistin-
guishable for the algorithm from a sequence of i 2 k0

consecutive ‘a’s, for some positive k0 � k* þ 1. Hence,
if the algorithm accepts the string aibi, it will also
accept the string ai�k0bi. As this string does not belong
to anbn, the algorithm does not accept all and only the
elements of anbn, contra assumption. Therefore anbn

cannot be a regular language.
As mentioned above, each regular language corre-

sponds to some FSA, i.e. an algorithm that
consumes one symbol at a time and changes its state
according to the symbol consumed. As the name
suggests, such an automaton has finitely many states.
Conversely, each FSA can be transformed into a regu-
lar grammar G such that the automaton accepts all and
only the strings in L(G).

The other levels of the Chomsky hierarchy like-
wise each correspond to a specific class of automata.
Context-free grammars correspond to FSAs that are
additionally equipped with a pushdown stack. When
reading an input symbol, such a machine can—next
to changing its state—add an item on top of a stack
or remove an item from the top of the stack.

Context-sensitive grammars correspond to linearly
bounded automata. These are essentially Turing machines,
i.e. FSAs with a memory tape that can perform arbitrary
operations (writing and erasing symbols on the tape and
moving the tape in either direction) during state tran-
sitions. The length of the available tape is not infinite,
though, but bounded bya number that is a linear function
of the length of the input string.

Finally, type-0 grammars correspond to unrestricted
Turing machines.
3. WHERE ARE NATURAL
LANGUAGES LOCATED?
The issue of where natural languages are located within
this hierarchy has been an open problem over decades.
Chomksky [4] pointed out already in the 1950s that
English is not a regular language, and this argument
probably carries over to all other natural languages.
The crucial insight here is that English has centre
embedding constructions. These are constructions

Neither did John claim that he neither smokes while . . . nor snores, nor
did anybody believe it.

Figure 4. Nested dependencies in English.

dass mer d’ chind em Hans es Huus lönd hälfe aanstriiche
THAT WE THE CHILDREN-ACC HANS-DAT THE HOUSE-ACC LET HELP PAINT

‘that we let the children help Hans paint the house’

Figure 5. Cross-serial dependencies in Swiss German.

1960 G. Jäger and J. Rogers Formal language theory

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

23
 F

eb
ru

ar
y

20
23

involving two dependent elements a and b that are not
adjacent, and that may contain another instance of the
same construction between the two parts. An example
is a neither–nor construction, as illustrated in figure 4.
The pair-wise dependencies between neither and nor
are nested. As far as the grammar of English goes,
there is no fixed upper bound on the number of levels
of embedding.7 Consequently, English grammar
allows for a potentially unlimited number of nested
dependencies of unlimited size. Regular grammars are
unable to recognize this kind of unlimited dependencies
because this involves counting and comparing. As men-
tioned at the end of the previous section, regular
languages cannot do this.

The issue of whether all natural languages are context-
free proved to be more tricky.8 It was finally settled only
in the mid-1980s, independently by the scholars Riny
Huybregts [5], Stuart Shieber [6] and Christopher
Culy [7]. Huybregts and Shieber use essentially the
same argument. They notice that the dependencies
between verbs and their objects in Swiss German are
unbounded in length. However, they are not nested,
but rather interleaved so that they cross each other. An
example (taken from [6]) is given in figure 5.

Here, the first in a series of three article–noun
phrases (d’chind ‘the child’) is the object of the first
verb, lönd ‘let’ (lönd requires its object to be in accusative
case and d’chind is in accusative); the second article–
noun phrase (em Hans, ‘Hans’, carrying dative case) is
the object of the second verb (hälfe ‘help’, which
requires its object to be in dative case) and the third
article–noun phrase (es Huus ‘the house’, accusative
case) is the object of the third verb (aanstriiche ‘paint’,
which requires an accusative object). In English, as
shown in the glosses, each verb is directly adjacent to
its object, which could be captured even by a regu-
lar grammar. Swiss German, however, has crossing
dependencies between objects and verbs, and the
number of these interlocked dependencies is poten-
tially unbounded. Context-free grammars can only
handle an unbounded number of interlocked dependen-
cies if they are nested. Therefore Swiss-German cannot
be context-free. Culy makes a case that the rules of
word formation in the West-African language Bambara
conspire to create unbounded crossing dependencies as
well, thus establishing the non-context-freeness of this
language of well-formed words.

Simple toy languages displaying the same structural
properties are the copy language—where each
Phil. Trans. R. Soc. B (2012)
grammatical string has the form ww for some arbitrary
string w, and this creates dependencies of the cor-
responding symbols in the first and the second half of
the string—and anbmcndm, where the dependencies
between the ‘a’s and the ‘c’s include an unlimited
number of open dependencies reaching from the ‘b’s to
the ‘d’s. Therefore, both languages are not context-free.
4. MILDLY CONTEXT-SENSITIVE LANGUAGES
After this brief recapitulation of the ‘classical’ Chomsky
hierarchy, the rest of the paper will review two exten-
sions that have proved useful in linguistics and
cognitive science. The first one—dealt with in this
section—considers levels between context-free and con-
text-sensitive languages, so-called mildly context-sensitive
languages. The following section is devoted to the
subregular hierarchy, a collection of language classes
that are strictly included in the regular languages.

Since the 1980s, several attempts have been made to
design grammar formalisms that are more suitable for
doing linguistics than the rewrite grammars from the
Chomsky hierarchy, while at the same time approxi-
mating the computational tractability of context-free
grammars. The most prominent examples are Joshi’s
[8] tree adjoining grammar (TAG) and Mark Steedman’s
combinatory categorial grammar [9,10]. In 1991, Joshi
et al. [11] proved that four of these formalisms (the
two already mentioned ones and Gerald Gazdar’s [12]
linear indexed grammars and Carl Pollard’s [13] head
grammars) are equivalent, i.e. they describe the same
class of languages. A series of related attempts to further
extend the empirical coverage of such formalisms and
to gain a deeper understanding of their mathematical
properties converged to another class of mutually
equivalent formalisms (including David Weir’s [14]
linear context-free rewrite systems and set-local multi-
component TAGs, and Ed Stabler’s [15] formalization
of Noam Chomsky’s [16] minimalist grammars (MGs))
that describe an even larger class of formal languages.
As there are no common terms for these classes, we
will refer to the smaller class as TAG languages and
the larger one as MG languages.

The membership problem for TAG languages is
O(n6), i.e. the time that the algorithm takes grows
with the 6th power of the length of the string in ques-
tion. Non-CFLs that belong to the TAG languages
are, for instance:

context-free

context-sensitive

TAG

MG

anbn

a2
n

anbncndnen

anbmcndm

Figure 6. The mildly context-sensitive sub-hierarchy.

Formal language theory G. Jäger and J. Rogers 1961

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

23
 F

eb
ru

ar
y

20
23

— anbmcndm;
— the copy language;
— anbncn; and
— anbncndn.

The descriptive power of TAG languages is sufficient
to capture the kind of crossing dependencies that are
observed in Swiss German and Bambara.9

MGs (and equivalent formalisms) are still more
powerful than that. While TAG languages may only
contain up to four different types of interlocked unlim-
ited (crossing or nesting) dependencies, there is no
such upper bound for MG languages. To be more pre-
cise, each MG language has a finite upper bound for
the number of different types of dependencies, but
within the class of MG languages this bound may be
arbitrarily large. This leads to a higher computational
complexity of the membership problem. It is still
always polynomial, but the highest exponent of the
term may be arbitrarily large.

Becker et al. [18] argue that this added complexity
is actually needed to capture all aspects of word
order variation in German.

Non-TAG languages that are included in the MG
languages are, for instance,

— a1
n . . . ak

n for arbitrary k and
— wk for arbitrary k, i.e. the k-copy language for

any k.

Joshi [8] described a list of properties that an exten-
sion of the CFLs should have if it is to be of practical
use for linguistics:

— It contains all CFLs.
— It can describe a limited number of types of cross-

serial dependencies.
— Its membership problem has polynomial

complexity.
— All languages in it have constant growth property.

With regard to the last property, let L be some formal
language, and let l1, l2, l3, . . . be the strings in L,
ordered according to length. L has the constant
growth property if there is an upper limit for the differ-
ence in length between two consecutive elements of
this list. The motivation for this postulate is that in
each natural language, each sentence can be extended
to another grammatical sentence by adding a single
word (like an adjective or an adverb) or another
short conjunct. Hence there cannot be arbitrarily
large gaps in the list of possible lengths the sentences
of a language can have.

This postulate excludes many context-sensitive
languages, such as the set of square numbers, the set
of prime numbers or the set of powers of 2, etc.

Joshi calls classes of languages with these properties
mildly context-sensitive because they extend the CFLs,
but only slightly, preserving many of the ‘nice’ features
of the CFLs. Both TAG languages and MG languages
are mildly context-sensitive classes in this sense.

The refinement of the Chomsky hierarchy that
emerges from this line of research is displayed in
figure 6.
Phil. Trans. R. Soc. B (2012)
It should be noted that Michaelis & Kracht [19]
present an argument that Old Georgian is not an
MG language. This conclusion only follows, though,
if a certain pattern of complex case marking of this
language is applicable recursively without limit. Of
course, this issue cannot be settled for a dead
language, and so far the investigation of living
languages with similar properties has remained incon-
clusive. Most experts therefore assume at this time that
all natural languages are MG languages.
5. COGNITIVE COMPLEXITY
Classes of the Chomsky hierarchy provide a measure
of the complexity of patterns based on the structure
of the mechanisms (grammars, automata) that can dis-
tinguish them. But, as we observed in §2c, these
mechanisms make judgements about strings in terms
of specific analyses of their components. When dealing
with an unknown mechanism, such as a cognitive
mechanism of an experimental subject, we know noth-
ing about the analyses they employ in making their
judgements, we know only that they can or cannot
make these judgements about strings correctly.

The question for AGL, then, is what characteristics
of the formal mechanisms are shared by the physical
mechanisms employed by an organism when it is
learning a pattern. What valid inferences may one
make about the nature of an unknown mechanism
that can distinguish the same sorts of patterns?

Here, the grammar- and automata-theoretic charac-
terizations of the Chomsky hierarchy are much less
useful. As we saw in §§2d and 4, mechanisms with
widely differing natures often turn out to be equivalent
in the sense that they are capable of describing exactly
the same class of languages.10

Mechanisms that can recognize arbitrary CFLs
are not limited to mechanisms that analyse the string
in a way analogous to a context-free grammar.
Dependency grammars [20], for example, analyse a
string in terms of a binary relation over its elements,
and there is well-defined class of these grammars
that can distinguish all and only the CFLs. In learning
a CFL, it is not necessary to analyse it in terms

1962 G. Jäger and J. Rogers Formal language theory

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

23
 F

eb
ru

ar
y

20
23

of immediate constituency as it is formalized by
context-free grammars.

Similarly, within each of the levels of the Chomsky
hierarchy there are classes of languages that do not
require the full power of the grammars associated
with that level. The language anbn, for example,
while properly context-free, can be recognized by a
FSA that is augmented with a simple counter. The
languages anbmcmdn and anbn with explicit nested
dependencies cannot. On the other hand, these can
still be recognized by mechanisms that are simpler
than those that are required to recognize CFLs
in general.

So what can one say about a mechanism that can
learn a properly context-free pattern? For one thing,
it is not finite-state: that is, there is no bound, indepen-
dent of the length of the string, on the quantity of
information that it must infer in making a judgement
about whether the string fits the pattern. Beyond
that, there is very little if anything that we can deter-
mine about the nature of that information and how it
is used simply from the evidence that an organism
can learn the pattern.11

The situation is not hopeless, however. No matter
how complicated the information inferred by a mech-
anism in analysing a string, it must be based on
recognizing simple patterns that occur in the string
itself. One can, for example, identify the class of pat-
terns that can be recognized simply on the basis of
the adjacent pairs of symbols that occur in the string.
Any mechanism that is based, in part, on that sort of
information about the string will need at least to be
able to distinguish patterns of this sort.

In §6, we introduce a hierarchy of language-theor-
etic complexity classes that are based on this sort of
distinction: what relationships between the symbols
in the string a mechanism must be sensitive to (to
attend to) in order to distinguish patterns in that
class. Since they are based solely on the relationships
that are explicit in the strings themselves, these classes
are fundamental: every mechanism that can recognize
a pattern that is properly in one of these classes must
necessarily be sensitive to the kinds of relationships
that characterize the class.

On the other hand, the fact that they are defined in
terms of explicit relationships in the string itself also
implies that they are all finite-state. But they stratify
the finite-state languages in a way that provides a
measure of complexity that is independent of the
details that may vary between mechanisms that can
recognize a given pattern, one that does not depend
on a priori assumptions about the nature of the mech-
anism under study. Because this is a notion of
complexity that is necessarily relevant to cognitive
mechanisms, and because the relative complexity of
patterns is invariant over the range of equivalent mech-
anisms (a property not shared by measures like, for
example, minimum description length), it provides a
useful notion of cognitive complexity.

This is a notion of complexity that is particularly
useful for AGL: the patterns are relatively simple,
and are therefore relatively practical to test and they
provide information about the capabilities of the organ-
isms that is relevant, regardless of what additional
Phil. Trans. R. Soc. B (2012)
capabilities it may have that enable it to learn more
complicated patterns.

There are analogous hierarchies of classes that are
based on relationships that are explicit in trees and in
more complicated tree-like structures that stratify the
CFLs and a range of mildly context-sensitive languages
[21]. These, do, however, apply only to mechanisms
that analyse strings in terms of tree-like partial orders.

In §6, we survey a hierarchy of complexity classes
that is based on adjacency within a string, the so-
called local hierarchy [22]. There is a parallel hierarchy
that is based on precedence (over arbitrary distances)
that distinguishes long-distance relationships within
the string, including many that are relevant to a
broad range of aspects of human languages—including
some, but clearly not all, long-distance relationships in
syntax. More details of this hierarchy can be found
in [23].
6. SUBREGULAR LANGUAGES
A subregular language is a set of strings that can be
described without employing the full power of FSAs.
Perhaps a better way of thinking about this is that
the patterns that distinguish the strings that are
included in the language from those that are not can
be identified by mechanisms that are simpler than
FSAs, often much simpler.

Many aspects of human language are manifestly sub-
regular, including most ‘local’ dependencies and many
‘non-local’ dependencies as well. While these pheno-
mena have usually been studied as regular languages,
there are good reasons to ask just how much processing
power is actually needed to recognize them. In compara-
tive neurobiology, for example, there is no reason to
expect non-human animals to share the full range of
capabilities of the human language faculty. Even within
human cognition, if one expects to find modularity in
language processing, then one may well expect to find
differences in the capabilities of the cognitive mechan-
isms responsible for processing the various modules.
Similarly, in cognitive evolution one would not generally
expect the antecedents of the human language faculty to
share its full range of cognitive capabilities; we expect
complicated structures to emerge, in one way or another,
from simpler ones.

The hierarchy of language classes we are exploring
here are characterized both by computational mechan-
isms (classes of automata and grammars) and by
model-theoretic characterizations: characterizations in
terms of logical definability by classes of logical expres-
sions. The computational characterizations provide us
with the means of designing experiments: developing
practical sets of stimuli that allow us to probe the ability
of subjects to distinguish strings in a language in a given
class from strings that are not in that language and which
suffice to resolve the boundaries of that class. The
model-theoretic characterizations, because of their
abstract nature, allow us to draw conclusions that are
valid for all mechanisms which are capable of making
those distinctions. It is the interplay between these two
ways of characterizing a class of languages that provides
a sound foundation for designing AGL experiments and

a b a b a b a b a b a ba b a b a

a

a

a

b

b

k

a b
k

b

k

f

:

Figure 7. Scanners have a sliding window of width k, a par-

ameter, which moves across the string stepping one symbol
at a time, picking out the k-factors of the string. For SL
languages the string is accepted if and only if each of these
k-factors is included in a look-up table.

Formal language theory G. Jäger and J. Rogers 1963

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

23
 F

eb
ru

ar
y

20
23

interpreting their results. Both types of characterizations
are essential to this enterprise.
(a) Strictly local languages

We begin our tour of these language classes at the
lowest level of complexity that is not limited to
languages of finitely bounded size, patterns which
depend solely on the blocks of symbols which occur
consecutively in the string, with each block being con-
sidered independently of the others. Such patterns are
called strictly local (SL).12

An SLk definition is just a set of blocks of k adjacent
symbols (called k-factors) drawn from the vocabulary
augmented with two symbols, ‘D’ and ‘o’, denoting
the beginning and end of the string, respectively.
A string satisfies such a description if and only if
every k-factor that occurs in the string is licensed
by the definition. The SL2 description GðABÞn ¼ fD
A;AB;BA;Bog, for example, licenses the set of strings
of the form (AB)n.13

Abstract processing models for local languages
are called scanners (figure 7). For strictly k-local
languages, the scanner includes a look-up table
of k-factors. A string is accepted if and only if every
k-factor which occurs in the string is included in the
look-up table. The look-up table is formally identical
to an SLk description. These automata have no
internal state. Their behaviour, at each point in the
computation, depends only on the symbols which fall
within the window at that point. This implies that
every SLk language will be closed under substitution
of suffixes in the sense that, if the same k-factor
occurs somewhere in two strings that are in the
language, then the result of substituting the suffix,
starting at that shared k-factor, of one for the suffix
of the other must still be in the language.

Both the SLk descriptions and the strictly k-local
scanners are defined solely in terms of the length k
blocks of consecutive symbols that occur in the
string, taken in isolation. This has a number of
Phil. Trans. R. Soc. B (2012)
implications for cognitive mechanisms that can recog-
nize SL languages:

— Any cognitive mechanism that can distinguish
member strings from non-members of an SLk

language must be sensitive to, at least, the length
k blocks of consecutive symbols that occur in the
presentation of the string.

— If the strings are presented as sequences of symbols
in time, then this corresponds to being sensitive, at
each point in the string, to the immediately prior
sequence of k 2 1 symbols.

— Any cognitive mechanism that is sensitive only to
the length k blocks of consecutive symbols in the
presentation of a string will be able to recognize
only SLk languages.

Note that these mechanisms are not sensitive to the
k-factors which do not occur in the string.

(b) Probing the SL boundary

In order to design experiments testing an organism’s
ability to recognize SL languages, one needs a way of
generating sets of stimuli that sample languages that
are SL and sets that sample languages that are mini-
mally non-SL. (We return to these issues in §9.)
This is another place in which computational charac-
terizations of language classes are particularly useful.
The language of strings of alternating symbols (e.g.
‘A’s and ‘B’s: (AB)n), for example, is SL2. Mechan-
isms that are sensitive to the occurrence of length 2
blocks of consecutive symbols are capable, in prin-
ciple, of distinguishing strings that fit such a
constraint (e.g. ðABÞiþjþ1

, for some i and j) from
those that do not (e.g. (AB)iAA(AB)j). The ability to
do so can be tested using sets of strings that match
these patterns.14

Conversely, the language of strings in which some
symbol (e.g. ‘B’) is required to occur at least once is
not SLk for any k. (We refer to this language as
some-B.) Mechanisms that are sensitive only to the
occurrence of fixed size blocks of consecutive symbols
are incapable of distinguishing strings that meet such a
constraint from those that do not. Thus these organ-
isms would not, all other things being equal,
recognize that stimuli of the form Aiþjþ1 do not
belong to a language correctly generalized from sets
of stimuli of the form AiBAj.

(c) Locally k-testable languages

Notice that if the B were forbidden rather than
required, the second pattern would be a SL (even
SL1) property. So we could define a property requiring
some B as the complement—the language that contains
all and only the strings that do not occur in that
language—of an SL1 language. In this case, we take
the complement of the set of strings in which B does
not occur. If we add complement to our descriptions,
it turns out that our descriptions will be able to express
all Boolean operators: conjunction (and), disjunction
(or) and negation (not) in any combination.

In order to do this, we will interpret k-factors as
atomic (unanalysed) properties of strings; a string
satisfies a k-factor if and only if that factor occurs

a a b b

babababa

yes

no

accept

reject
b

ab
ba
aa
b
a

b
a

b

Boolean
network

a b a b a b a b a

Figure 8. LT automata keep a record of which k-factors
occur in a string and feed this information into a Boolean

network. The automaton accepts if, once the entire string
has been scanned, the output of the network is ‘yes’, and
rejects otherwise.

1964 G. Jäger and J. Rogers Formal language theory

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

23
 F

eb
ru

ar
y

20
23

somewhere in the string. We can then build des-
criptions as expressions in a propositional logic over
these atoms. We refer to formulae in this logic as
k-expressions. A k-expression defines the set of all
(and only) strings that satisfy it. A language that is
definable in this way is a locally k-testable (LTk)
language. The class of languages that are definable
by k-expressions for any finite k is denoted LT.

By way of example, we can define the set of strings
which do not start with A and contain at least one
B with the 2-expression: (:DA)^B.

Note that any SLk definition G can be translated
into a k-expression which is the conjunction
:f1 ^ :f2 ^ � � � in which the fi are the k-factors which
are not included in G. SLk definable constraints are,
in essence, conjunctions of negative atomic constraints
and every such constraint is LTk definable: SL is a
proper subclass of LT.

A scanner for an LTk language contains, instead of
just a look-up table of k-factors, a table in which it
records, for every k-factor over the vocabulary,
whether or not that k-factor has occurred somewhere
in the string. It then feeds this information into a com-
binatorial (Boolean) network which implements some
k-expression. When the end of the string is reached,
the automaton accepts or rejects the string depending
on the output of the network. (See figure 8.)

Since an LTk scanner records only which k-factors
occur in the string, it has no way of distinguishing
strings which are built from the same set of k-factors.
Hence, a language is LTk if and only if there is
no pair of strings, each comprising the same set of
k-factors, one of which is included in the language
and the other excluded.

From a cognitive perspective, then:

— Any cognitive mechanism that can distinguish
member strings from non-members of an LTk

language must be sensitive, at least, to the set of
length k contiguous blocks of symbols that occur
in the presentation of the string—both those that
do occur and those that do not.

— If the strings are presented as sequences of symbols
in time, then this corresponds to being sensitive, at
Phil. Trans. R. Soc. B (2012)
each point in the string, to the set of length k blocks
of symbols that occurred at any prior point.

— Any cognitive mechanism that is sensitive only
to the occurrence or non-occurrence of length k
contiguous blocks of symbols in the presentation
of a string will be able to recognize only LTk

languages.

One of the consequences of the inability of k-
expressions to distinguish strings which comprise the
same set of k-factors is that LT languages cannot, in
general, distinguish strings in which there is a single
occurrence of some symbol from those in which
there are multiple occurrences: the strings
DA � � �A
|fflfflffl{zfflfflffl}

k�1

B A � � �A
|fflfflffl{zfflfflffl}

k�1

o and DA � � �A
|fflfflffl{zfflfflffl}

k�1

B A � � �A
|fflfflffl{zfflfflffl}

k�1

B A � � �A
|fflfflffl{zfflfflffl}

k�1

o

comprise exactly the same set of k-factors. Conse-
quently, no mechanism that is sensitive only to the
set of fixed size blocks symbols that occur in a string
will be able, in general, to distinguish strings with a
single instance of a symbol from those with more
than one.
(d) Probing the LT boundary

The language of strings in which some block of k con-
tiguous symbols is required to occur at least once (e.g.
some-B of §6b, for which any k � 1 will do) is LTk.
Mechanisms which are sensitive to the set of fixed
length blocks of consecutive symbols which have
occurred are capable, in principle, of distinguishing
strings that meet such a constraint (e.g. AiBAj) from
those that do not (e.g. Aiþjþ1). Again, these patterns
form a basis for developing sets of stimuli that provide
evidence of an organism’s ability to make these
distinctions.

Conversely, the language of strings in which some
block of k contiguous symbols is required to occur
exactly once (e.g. one-B, in which exactly one ‘B’
occurs in every string) is not LTk for any k. Mechan-
isms that are sensitive only to the set of fixed length
blocks of consecutive symbols which have occurred
are incapable of distinguishing strings that meet such
a constraint from those that do not. Thus sets of
stimuli generated by the patterns AiBAjþkþ1 (in the
set one-B) and AiBAjBAk (not in that set) can be
used to probe whether an organism is limited to
distinguishing sets of strings on this basis.
(e) FO(+1) definability: LTT

This weakness of LT is, simply put, an insensitivity to
quantity as opposed to simple occurrence. We can
overcome this by adding quantification to our logical
descriptions, that is, by moving from propositional
logic to a first-order logic which we call FO(þ1).
Logical formulae of this sort make (Boolean combi-
nations of) assertions about which symbols occur at
which positions (s(x), where s is a symbol in the voca-
bulary and x is a variable ranging over positions in a
string), about the adjacency of positions (x / y, which
asserts that the position represented by y is the suc-
cessor of that represented by x) and about the
identity of positions (x � y), with the positions being
quantified existentially (9) or universally (8). This

a a b
bbababab

yes

no

accept

reject

a
b
a

a
b

b

b
ab

a
a

Boolean
network

f

b

a b a a a b a b a
b

Figure 9. LTT automata count the number of k-factors that
occur in a string up to some bound and feed this information

into a Boolean network. The automaton accepts if, once the
entire string has been scanned, the output of the network is
‘Yes’, and rejects otherwise.

Formal language theory G. Jäger and J. Rogers 1965

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

23
 F

eb
ru

ar
y

20
23

allows us to distinguish, for example, one occurrence
of a B from another:

wOne-B ¼ ð9xÞ½BðxÞ ^ ð:9yÞ½BðyÞ ^ :x � y��

This FO(+1) formula requires that there is some
position in the string (call it x) at which a B occurs
and there is no position (y) at which a B occurs that
is distinct from that (:x � y).

In this example, we have defined a property
expressed in terms of the occurrence of a single
symbol B, but, using the successor relation, we could
just as well be restricting the number of occurrences
of any k-factor, for some fixed k. Moreover, using
multiple levels of quantification, we can distinguish
arbitrarily many distinct positions, but, since a single
formula can only contain a fixed number of quanti-
fiers, there is a fixed finite bound on the number of
positions a given formula can distinguish. Hence
FO(þ1) formulae can, in essence, count, but only
up to some fixed threshold. Note that the fixed
threshold is compatible with subitization as well as
actual counting.

The class of FO(þ1) definable languages is charac-
terized by what is known as local threshold testability
(LTT). LTT automata extend LT automata by count-
ing the number of occurrences of each k-factor, with
the counters counting up to a fixed maximum and
then simply staying at that value if there are additional
occurrences. (See figure 9.)

This gives us a cognitive interpretation of LTT:

— Any cognitive mechanism that can distinguish
member strings from non-members of an LTT
language must be sensitive, at least, to the multi-
plicity of the length k blocks of symbols, for some
fixed k, that occur in the presentation of the
string, distinguishing multiplicities only up to
some fixed threshold t.

— If the strings are presented as sequences of symbols
in time, then this corresponds to being able count
up to some fixed threshold.

— Any cognitive mechanism that is sensitive only to
the multiplicity, up to some fixed threshold (and,
in particular, not to the order) of the length k
Phil. Trans. R. Soc. B (2012)
blocks of symbols in the presentation of a string
will be able to recognize only LTT languages.

(f) Probing the LTT boundary

The language of strings in which some block of k con-
tiguous symbols is required to occur exactly once (e.g.
one-B, for which any k and t � 1 will do) is LTTk,t.
Mechanisms which are sensitive to the multiplicity,
up to some fixed threshold, of fixed length blocks of
consecutive symbols which have occurred are capable,
in principle, of distinguishing strings that meet such a
constraint (e.g. AiBA jþkþ1) from those that do not
(e.g. AiBAjBAk).

Conversely, the language of strings in which some
block of k contiguous symbols is required to occur
prior to the occurrence of another (e.g. no-B-after-C,
in which no string has an occurrence of ‘C’ that precedes
an occurrence of ‘B’, with ‘A’s freely distributed) is not
LTTk,t for any k or t. Mechanisms that are sensitive
only to the multiplicity, up to some fixed boundary, of
the occurrences of fixed length blocks of consecutive
symbols are incapable of distinguishing strings that
meet such a constraint from those that do not. Sets of
stimuli that test this ability can be based on the patterns
AiBAjCAk, AiBAjBAk and AiCAjCAk, all of which
satisfy the no-B-after-C constraint, and AiCAjBAk,
which violates it.

(g) FO(<) definability: SF

If we extend the logic of FO(þ1) to express relationships
in terms of precedence (,) as well as successor, then we
can define constraints in terms of both the multiplicity of
factors and their order.15 The class of FO(,) definable
languages is properly known as LTO (locally testable
with order), but this turns out to be equivalent to the
better known class of star-free (SF) languages. These
are the class of languages that are definable by regular
expressions without Kleene-closure—in which the ‘*’
operator does not occur—but with complement—in
which the ‘ �ð Þ’ operator may occur [22].

This is, in terms of model-theoretic definability,
the strongest class that is a proper subclass of the regular
languages. The regular languages are the sets of strings
that are definable using þ1 (and/or ,) and monadic
second-order quantification—quantifications over sub-
sets of positions as well as over individual positions. It
is not clear that this increase in definitional power is
actually useful from a linguistic point of view. There
seems to be very few, if any, natural linguistic constraints
that are regular but not star-free.

(i) Cognitive interpretation of SF
— Any cognitive mechanism that can distinguish

member strings from non-members of an SF
language must be sensitive, at least, to the order
of the length k blocks of symbols, for some fixed
k and some fixed maximum length of the
sequences of blocks, that occur in the presentation
of the string.

— If the strings are presented as sequences of symbols
in time, then this corresponds to being sensitive to
the set of sequences, up to that maximum length,

S

S0

S3
S4

S1
S2

Sd

S

T

V
X

P

T

V

X
P

TP TT VX VV
TPP TPT TTX TTS
TXX TXV TS
VXX VXV VVP VVS
VPX VPS VS
PPP PPT PTX PTS
PXX PXV PS
XXX XXV XVP XVS

3-factors

Figure 10. Reber’s [30] grammar.

1966 G. Jäger and J. Rogers Formal language theory

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

23
 F

eb
ru

ar
y

20
23

of the length k blocks that have occurred at any
prior point.

— Any cognitive mechanism that is sensitive only to
the set of fixed length sequences of length k
blocks of symbols in the presentation of a string
will be able to recognize only SF languages.

7. STATISTICAL MODELS OF LANGUAGE
Many studies of AGL have focused on statistical learn-
ing [25–27]. Language models which are based on the
probability of a given symbol following another are
Markov processes [28]. These can be interpreted as
FSAs with transition probabilities where the under-
lying FSA recognizes an SL2 language. ‘n-gram’ and
‘n-factor’ are equivalent concepts; in general, an
n-gram model is a weighted version of a FSA that
recognizes an SLn language; an n-gram model of a
language (an (n 2 1)st-order Markov model) is a
strictly n-local distribution.

Statistical models of language are not directly com-
parable to the sets of strings of traditional FLT, but
there is a clear distinction between SL languages and
n-gram models in which probabilities are not pre-
served under substitution of suffixes. Nevertheless, a
language learner that infers probabilities of n-grams
must be able to distinguish n-grams. In other words,
it must attend to the n-factors of the input. Thus,
the notion of cognitive complexity that we have
developed here is still relevant.

Each of the levels of the hierarchy corresponds to
a class of statistical distributions. The number of
parameters, though, rises rapidly—the number of par-
ameters of an LTk distribution is exponential in k. In
application, the higher complexity models are likely to
be infeasible. On the other hand, there is a complexity
hierarchy that parallels the local hierarchy but which is
based on precedence—order of symbols independent
of the intervening material [23]—which also provides a
basis for statistical models. The strictly piecewise distri-
butions, those analogous to n-gram models, are both
feasible and are capable of discriminating many long-
distance dependencies [29]. The question of whether
a learner can attend to subsequences (with arbitrary
intervening material) in addition to or rather than
substrings (factors) is significant.
8. SOME CLASSIC ARTIFICIAL GRAMMARS
Some of the earliest AGL experiments were conducted
by Reber [30]. These were based on the grammar
Phil. Trans. R. Soc. B (2012)
represented by the FSA in figure 10. This automaton
recognizes an SL3 language, licensed by the set of
3-factors also given in the figure—to learn a language
of this form, the subject need only attend to the
blocks of three consecutive symbols occurring in
the strings, recognizing an exception when one of the
forbidden blocks occurs.

Saffran et al. [26] presented their test subjects with
continuous streams of words in which word bound-
aries were indicated only by the transitional
probabilities between syllables. In general, this would
give an arbitrary SL2 distribution, but in this case
the probabilities of the transitions internal to the
words is 1.0 and all transitions between words are
equiprobable.16 Under these circumstances, the
language is the same as that of the SL2 automaton
on which the distribution is based—i.e. this language
is simply a strictly 2-local language. It should be
noted, though, that from the perspective of cognitive
complexity we have presented here this is a distinction
without a difference. Whether the language is a non-
trivial statistical model or not, to learn it the subjects
need only attend to the pairs of adjacent syllables
occurring in the stimulus.

Marcus et al. [31] specifically avoided prediction by
transitional probabilities by testing their subjects with
strings generated according to the training pattern, but
over a novel vocabulary. Gomez & Gerken [32] used a
similar design. In the latter case, the grammars they
used are similar to that of Reber and also license SL3

languages. Marcus et al. limited their stimuli to exactly
three syllables in order to eliminate word length as a
possible cue. In general, every language of three syllable
words is trivially SL4. The focus of the experiments,
though, were strings distinguished by where and if sylla-
bles were repeated (i.e. ABA versus AAB versus ABB).
Languages in which no syllable is repeated are simply
SL2; those in which either the first pair of syllables, the
last pair of syllables and/or the first and last syllable are
repeated are SL3. In all of these cases, the language
can be distinguished by simply attending to blocks of
consecutive syllables in isolation.

Finally, Saffran [27] used a language generated by
a simple context-free grammar in which there is no
self-embedding—no category includes a constituent
which is of the same category. Hence, this language
is also finite and trivially SL. Again, though, the exper-
iments focused on the ability of the subjects to learn
patterns within these finite bounds. In this case,
there were two types of patterns. In the first type, a
word in some category occurs only in the presence of

Formal language theory G. Jäger and J. Rogers 1967

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

23
 F

eb
ru

ar
y

20
23

a word in another specific category. In the second type
a word in some category occurs only when a word of a
specific category occurs somewhere prior to it in the
word. These are both non-strictly local patterns. The
first is LT1—learning this pattern requires attention
to the set of syllables that occur in the word. The
second is strictly 2-piecewise testable, at the lowest
level of the precedence-based hierarchy. Learning it
requires attention to the set of pairs of syllables in
which one occurs prior to the other in the word,
with arbitrary intervening material.

Many recent AGL experiments have employed pat-
terns of the types (AB)n (repeated ‘AB’ pairs) and
AnBn (repeated ‘A’s followed by exactly the same
number of ‘B’s, sometimes with explicit pairing of
‘A’s and ‘B’s either in nested order or in ‘cross-serial’
order: first ‘A’ with first ‘B’, etc.) As noted in §6a,
(AB)n is strictly 2-local, the simplest of the complexity
classes we have discussed here. AnBn is properly con-
text-free, with or without explicit dependencies. All
automata that can recognize non-finite-state languages
can be modelled as FSAs with some sort of additional
unbounded memory (one or more counters, a stack, a
tape, etc.) The question of what capabilities are
required to recognize properly CFLs, then, is a
question of how that storage is organized.

As noted in §5, AnBn without explicit dependencies
can be recognized by counting ‘A’s and ‘B’s (with a
single counter), a simpler mechanism than that required
to recognize CFLs in general. AnBn with explicit nested
dependencies cannot be recognized using a single coun-
ter, but it is a linear CFL,17 also simpler than the class of
CFLs in general. The question of whether there are
dependencies between the ‘A’s and ‘B’s is another
issue that generally depends on knowing the way that
the strings are being analysed. But it is possible to
make the distinction between languages that can be
recognized with a single counter and those that are prop-
erly linear CFLs without appealing to explicit
dependencies by using the language AnBmCmDn.18 If
the dependencies between the ‘A’s and ‘B’s are cross-
serial, then in AnBn is properly non-context-free.
A language that makes the same distinction without
explicit dependencies is AnBmCnDm.

The difficulty of identifying which type of struc-
ture is being used by a subject to recognize a given
non-regular pattern in natural languages delayed
confirmation that there were human languages that
employed cross-serial dependencies for decades [5–7,
34,35]. In AGL experiments, one has the advantage of
choosing the pattern, but the disadvantage of not
having a priori knowledge of which attributes of the
symbols are being distinguished by the subjects. The
fact that a particular ‘A’ is paired with a particular
‘B’ means that those instances must have a different
character than other instances of the same category.
Indeed, these patterns can be represented as AnAn

with explicit dependencies of some sort between the
‘A’s in the first half of the string and those in the
second half. Hence, most artificial grammars of this
sort are actually more complicated versions of
AnBmCmDn or AnBmCnDm. There seems to be little
advantage to using patterns in which the dependencies
are less explicit than these.
Phil. Trans. R. Soc. B (2012)
9. DESIGNING AND INTERPRETING ARTIFICIAL
GRAMMAR LEARNING EXPERIMENTS
All of this gives us a foundation for exploring AGL exper-
iments from a formal perspective. We will consider
familiarization/discrimination experiments. We will use
the term generalize rather than ‘learn’ or ‘become famil-
iarized with’ and will refer to a response that indicates
that a string is recognized as an exception as surprise.

Let us call the set generated by the artificial gram-
mar we are interested in I, the intended set. The
subject is exposed to some finite subset of this,
which we will call F, the familiarization set. It then
generalizes to some set (possibly the same set—the
generalization may be trivial). Which set they general-
ize to gives evidence of the features of F the subject
attended to. An error-free learner would not neces-
sarily generalize to I, any superset of F is consistent
with their experience. We will assume that the set the
subject generalizes to is not arbitrary—it is not
restricted in ways that are not exhibited by F—and
that the inference mechanism exhibits some sort of
minimality—it infers judgements about the stimuli
that are not in F as well as those that are.19

We then present the subject with a set which we will
call D, the discrimination set, which includes some
stimuli that are in I and some which are not, and
observe which of these are treated by the subject as
familiar and which are surprising. One can draw con-
clusions from these observations only to the extent
that D distinguishes I from other potential generaliz-
ations. That is, D needs to distinguish all supersets
and subsets of I that are consistent with (i.e. supersets
of) F.

Figure 11 represents a situation in which we are test-
ing the subject’s ability to recognize a set that is
generated by the pattern I ¼ AnBn, in which a block of
‘A’s is followed by block of ‘B’s of the same length, and
we have exposed the subject to stimuli of the form F ¼
AABB. The feature that is of primary interest is the
fact that the number of ‘A’s and ‘B’s is exactly the
same, a constraint that is properly context-free.

The innermost circle encompasses F. The bold
circle delimits the intended set I. The other circles
represent sets that are consistent with F but which
generalize on other features. For example, a subject
that identifies only the fact that all of the ‘A’s precede
all of the ‘B’s would generalize to the set we have called
AnBm. This set is represented by the middle circle on
the right-hand side of the figure and encompasses I.
A subject that identifies, in addition, the fact that all
stimuli in F are of even length might generalize to
the set we label AnBeven

m . This is represented by the
inner circle on the right-hand side.

It is also possible that the subject has learned that
there are at least as many ‘A’s as there are ‘B’s
(AnBnþm) or v.v. These sets include I and that portion
of AnBm above (resp., below) the dotted line. Alterna-
tively, if the subject has generalized from the fact that
the number of ‘A’s is equal to the number of ‘B’s but
not the fact that all of the ‘A’s precede all of the ‘B’s,
they might generalize to the set we label ABequal.
Included in this set, as a proper subset, is the language
(AB)n, which is not consistent with F but does share
the feature of the ‘A’s and ‘B’s being equinumerous.

F

AnBn n < 2

AABB

(AB)n

AAB

ABB

I
AnBn

I = {AnBn|n > 1}

{A,B}*

AnBm
even

AnBm
ABequal

An+mBm

AnBn+m

F = {AABB} D = ?

Figure 11. Language inference experiments.

1968 G. Jäger and J. Rogers Formal language theory

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

23
 F

eb
ru

ar
y

20
23

It is also possible that the subject makes the mini-
mal generalization that the number of ‘A’s is finitely
bounded. The smallest of these sets consistent with
F is the set we have labelled AnBn, n � 2.

These, clearly, are not all of the sets the subject
might consistently infer from F but they are a reason-
able sample of principled generalizations that we need
to distinguish from I. Note that, in this case, the
potential generalizations span the entire range of
classes from SL2 (AnBm), through CF (AnBnþm and
ABequal). If we are to distinguish, say, the boundary
between finite state and context-free our probes will
need to distinguish these. To do that, D must include
stimuli in the symmetric differences of the potential
generalizations (including I), that is to say stimuli
that are in one or the other but not both.

For example, suppose we test the subject with
strings of the form AAB. These are not in AnBn (prop-
erly CF) but are in the set AnBm (SL), so subjects that
have generalized to the former will generally find them
surprising while those that have generalized to the
latter will not. On the other hand, they are also not
in the set AnBeven

m , which is finite state, but are in
AnþmBm, which is properly context-free. Thus these
stimuli do not resolve the finite state boundary.

Suppose, then, that we test with strings of the form
AAAB. These, again, are not in (CF) but are in AnBm

(SL). But they are also not in both of AnBeven
m (finite

state) and AnþmBm (properly context-free). Again,
they do not resolve the finite state boundary.

One can distinguish the finite state from the non-finite
state languages in this particular set of potential general-
izations if one includes strings of both of these forms in
D, but that still will not distinguish AnBn from
AnBnþm, which is presumably not significant here but
may well be in testing other hypotheses. These can be
distinguished by including strings of the forms that cor-
respond to these but include more ‘B’s than ‘A’s.

None of these, though, distinguish a learner that
has generalized to a finite set (AnBn, n � 2). To get evi-
dence that the learner has done this, one needs to
include strings of length greater than four.

One ends up with a discrimination set that includes
at least five variants of the pattern AnBm for different
values of n and m between two and six. This seems
to be very near the boundary of practicality for most
Phil. Trans. R. Soc. B (2012)
experiments involving living organisms. There are
two ways that one might resolve this limitation: one
can find experiments which can distinguish perform-
ance on stimuli of this size, perhaps not being able to
draw any conclusions for some types of subject, or
one can refine one’s hypothesis so that it is practically
testable. In any case, the issue is one that requires a
good deal of careful analysis and it is an issue that
cannot be ignored.
10. CONCLUSION
The notion of language theoretic complexity, both with
respect to the Chomsky hierarchy and with respect to
the sub-regular hierarchies, is an essential tool in AGL
experiments. In the design of experiments they provide
a way of formulating meaningful, testable hypotheses,
of identifying relevant classes of patterns, of finding
minimal pairs of languages that distinguish those classes
and of constructing sets of stimuli that resolve the
boundaries of those languages. In the interpretation of
the results of the experiments the properties of the com-
plexity classes provide a means of identifying the pattern
a subject has generalized to, the class of patterns the
subject population is capable of generalizing to and, ulti-
mately, a means of identifying those features of the
stimulus that the cognitive mechanisms being used are
sensitive to.

In this paper, we have presented a scale for informing
these issues that is both finer than and broader than the
finite state/context-free contrast that has been the focus
of much of the AGL work to date. While some of the dis-
tinctions between classes are subtle, and some of the
analyses delicate, there are effective methods for dis-
tinguishing them that are generally not hard to apply
and the range of characterizations of the classes provides
a variety of tools that can be employed in doing so. More
importantly, the capabilities distinguished by these
classes are very likely to be significant in resolving the
issues that much of this research is intended to explore.

Finally, fully abstract characterizations of language
classes, like many of those we have presented here,
provide information about characteristics of the pro-
cessing mechanism that are necessarily shared by all
mechanisms that are capable of recognizing languages
in these classes. This provides a foundation for

Formal language theory G. Jäger and J. Rogers 1969

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

23
 F

eb
ru

ar
y

20
23

unambiguous and strongly supported results about
cognitive mechanisms for pattern recognition.

We thank William Tecumseh Fitch and the anonymous
reviewers for immensely helpful comments on the draft
version of this article.
ENDNOTES
1Authoritative textbooks on this field are [1,2].
2This points to another simplification that is needed when applying

FLT to natural languages: in each language with productive word

formation rules, the set of possible words is unbounded. Likewise,

the set of morphemes is in principle unbounded if loans from

other languages, acronym formation and similar processes are

taken into consideration. It is commonly assumed here that the

object of investigation is an idealized language that does not undergo

change. When the vocabulary items are identified with words, it is

tacitly taken for granted that the words of a language form a finite

number of grammatical categories, and that it is thus sufficient to

consider only a finite number of instances of each class.
3The term ‘context-sensitive’ has only historical significance. It has

noting to do with context-dependency in a non-technical sense in

any way. The same applies to the term ‘context-free’.
4In the terminology of computational complexity theory, the prob-

lem is PSPACE hard.
5In context-free grammars, the right-hand side of a rule may be the

empty string, while in context-sensitive grammars this is not licit.

Therefore, strictly speaking, not every context-free grammar is con-

text-sensitive. This is a minor technical point though that can be

ignored in the present context.
6Equivalently, we may demand that the rules take the form ‘A! a’

or ‘A! Ba’, with the non-terminal, if present, preceding the term-

inal. It is crucial though that within a given grammar, all rules start

with a terminal on the right-hand side, or all rules end with a

terminal.
7Note that here one of the idealizations mentioned above come into

play here: It is taken for granted that a productive pattern—forming

a neither–nor construction out of two grammatical sentences—can be

applied to arbitrarily large sentences to form an even larger sentence.
8Here, we strictly refer to the problem whether the set of strings

of grammatical English sentences is a CFL, disregarding all further

criteria for the linguistic adequacy of a grammatical description.
9A thorough discussion of types of dependencies in natural

languages and mild context-sensitivity can be found in [17].
10Even more strongly, it is generally possible to convert descriptions

from one class of models to descriptions in an equivalent class fully

automatically.
11This does not imply that mechanisms that are physically finitely

bounded—the brain of an organism, for example—are restricted to

recognizing only finite-state languages. The organism may well

employ a mechanism that, in general, requires unbounded

memory which would simply fail when it encounters a string that

is too complex, if it ever did encounter such a string.
12More details on this and the other local classes of languages can be

found in [24].
13We use capital letters here to represent arbitrary symbols drawn

from mutually distinct categories of the symbols of the vocabulary.

Although none of our mechanisms involve the sort of string rewriting

employed by the grammars of the first part of this paper and we dis-

tinguish no formal set of non-terminals, there is a rough parallel

between this use of capital letters to represent categories of terminals

and the interpretation of non-terminals as representing grammatical

categories in phrase-structure grammars.
14The patterns are both defined in terms of the parameters i and j so

that the length of the strings do not vary between them.
15The successor relationship is definable using only , and quantifi-

cation, so one no longer explicitly needs the successor relation.

Similarly, multiplicity of factors can be defined in terms of their

order, so one does not actually need to count to a threshold greater

than 1.
16Technically, the final probabilities of this distribution were all 0,

i.e. the distribution included no finite strings.
Phil. Trans. R. Soc. B (2012)
17In which only a single non-terminal occurs at any point in the

derivation.
18Note that two counters would suffice to recognize AnBmCmDn but,

as Minsky showed [33], two counters suffice to recognize any

computable language.
19The assumption that the generalization is not arbitrary implies,

inter alia, that if it includes strings that are longer than those in F

it will include strings of arbitrary length. This allows one to verify

that a subject has not simply made some finite generalization of

the (necessarily finite) set F.
REFERENCES
1 Hopcroft, J. E., Motwani, R. & Ullman, J. D. 2000 Intro-

duction to automata theory, languages and computation.
Reading, MA: Addison-Wesley.

2 Sipser, M. 1997 Introduction to the theory of computation.
Boston, MA: PWS Publishing.

3 Chomsky, N. 1956 Three models for the description of
language. IRE Trans. Inform. Theory 2, 113–124.
(doi:10.1109/TIT.1956.1056813)

4 Chomsky, N. 1957 Syntactic structures. The Hague, The
Netherlands: Mouton.

5 Huybregts, R. 1984 The weak inadequacy of context-free
phrase structure grammars. In Van periferie naar kern
(eds. G. J. de Haan, M. Trommelen & W. Zonneveld),

ppp. 81–99. Dordrecht, The Netherlands: Foris.
6 Shieber, S. 1985 Evidence against the context-freeness of

natural language. Linguist. Phil. 8, 333–343. (doi:10.
1007/BF00630917)

7 Culy, C. 1985 The complexity of the vocabulary of
Bambara. Linguist. Philos. 8, 345–351. (doi:10.1007/
BF00630918)

8 Joshi, A. 1985 How much context-sensitivity is necessary
for characterizing structural descriptions—tree adjoining

grammars. In Natural language processing. Theoretical,
computational and psychological perspectives (eds.
D. Dowty, L. Karttunen & A. Zwicky). Cambridge,
UK: Cambridge University Press.

9 Ades, A. E. & Steedman, M. J. 1982 On the order of

words. Linguist. Philos. 4, 517–558. (doi:10.1007/
BF00360804)

10 Steedman, M. 2000 The syntactic process. Cambridge,
MA: MIT Press.

11 Joshi, A., Vijay-Shanker, K. & Weir, D. 1991 The conver-

gence of mildly context-sensitive grammar formalisms. In
Processing of linguistic structure (eds. P. Sells, S. Shieber &
T. Wasow), pp. 31–81. Cambridge, MA: MIT Press.

12 Gazdar, G. 1988 Applicability of indexed grammars to

natural languages. Technical Report 85–34, Center for
the Study of Language and Information, Stanford, CA.

13 Pollard, C. J. 1984 Generalized phrase structure gram-
mars, head grammars and natural language. PhD
thesis, Stanford, CA.

14 Weir, D. J. 1988 Characterizing mildly context-sensitive
grammar formalisms. PhD thesis, University of
Pennsylvania.

15 Stabler, E. P. 1997 Derivational minimalism. In Logical
aspects of computational linguistics (ed. C. Retoré), pp.

68–95. Berlin, Germany: Springer.
16 Chomsky, N. 1995 The minimalist program. Cambridge,

MA: MIT Press.
17 Stabler, E. P. 2004 Varieties of crossing dependencies:

structure dependence and mild context sensitivity. Cogn.
Sci. 28, 699–720. (doi:10.1207/s15516709cog2805_4)

18 Becker, T., Joshi, A. & Rambow, O. 1991 Long-distance
scrambling and tree adjoining grammars. In Proc. 5th
Conf. of European Chapter of the Association for Compu-
tational Linguistics, Berlin, Germany, 9–11 April 1991,
pp. 21–26. Association for Computational Linguistics.

http://dx.doi.org/10.1109/TIT.1956.1056813
http://dx.doi.org/10.1007/BF00630917
http://dx.doi.org/10.1007/BF00630917
http://dx.doi.org/10.1007/BF00630918
http://dx.doi.org/10.1007/BF00630918
http://dx.doi.org/10.1007/BF00360804
http://dx.doi.org/10.1007/BF00360804
http://dx.doi.org/10.1207/s15516709cog2805_4

1970 G. Jäger and J. Rogers Formal language theory

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

23
 F

eb
ru

ar
y

20
23

19 Michaelis, J. & Kracht, M. 1997 Semilinearity as a syn-
tactic invariant. In Logical aspects of computational
linguistics (ed. C. Retoré), pp. 329–345. Berlin,

Germany: Springer.
20 Tesnière, L. 1959 Elèments de syntaxe structurale. Paris,

France: Klincksiek.
21 Rogers, J. 2003 wMSO theories as grammar formalisms.

Theoret. Comput. Sci. 293, 291–320. (doi:10.1016/

S0304-3975(01)00349-8)
22 McNaughton, R. & Papert, S. A. 1971 Counter-free auto-

mata. Cambridge, MA: MIT Press.
23 Rogers, J., Heinz, J., Bailey, G., Edlefsen, M., Visscher,

M., Wellcome, D. & Wibel, S. 2010 On languages piece-
wise testable in the strict sense. In The mathematics of
language: revised selected papers from the 10th and 11th
Biennial Conference on the Mathematics of Language (eds.
C. Ebert, G. Jäger & J. Michaelis), Lecture Notes in

Computer Science/Lecture Notes in Artificial Intelli-
gence, vol. 6149, pp. 255–265. Berlin, Germany:
FoLLI/Springer.

24 Rogers, J. & Pullum, G. 2007 Aural pattern recognition
experiments and the subregular hierarchy. In Proc. 10th
Mathematics of Language Conference (ed. M. Kracht),
pp. 1–7. Los Angeles, CA: University of California.

25 Christiansen, M. H. & Chater, N. (ed.) 2001 Connection-
ist psycholinguistics. New York, NY: Ablex.

26 Saffran, J. R., Aslin, R. N. & Newport, E. L. 1996

Statistial learning by 8-month-old infants. Science 274,
1926–1928. (doi:10.1126/science.274.5294.1926)
Phil. Trans. R. Soc. B (2012)
27 Saffran, J. R. 2001 The use of predictive dependencies in
language learning. J. Mem. Lang. 44, 493–515. (doi:10.
1006/jmla.2000.2759)

28 Manning, C. & Schütze, H. 1999 Foundations of statistical
natural language processing. Cambridge, MA: MIT Press.

29 Heinz, J. & Rogers, J. 2010 Estimating strictly piecewise
distributions. In Proc. 48th Annual Meeting of the
Association for Computational Linguistics, Uppsala,
Sweden, 11–16 July 2010, pp. 886–896. Association for
Computational Linguistics.

30 Reber, A. S. 1967 Implicit learning of artificial gram-
mars. J. Verb. Learn. Verb. Behav. 6, 855–863. (doi:10.

1016/S0022-5371(67)80149-X)
31 Marcus, G. G., Vijayan, S., Bandi Rao, S. & Vishton,

P. M. 1999 Rule learning by seven-month-old infants.
Science 283, 77–79. (doi:10.1126/science.283.5398.77)

32 Gomez, R. L. & Gerken, L. 1999 Artificial grammar

learning by 1-year-olds leads to specific and abstract
knowledge. Cognition 70, 109–135. (doi:10.1016/
S0010-0277(99)00003-7)

33 Minsky, M. L. 1961 Recursive unsolvability of Post’s
problem of ‘tag’ and other topics in the theory of
Turing machines. Ann. Math. 74, 437–455. (doi:10.
2307/1970290)

34 Pullum, G. K. & Gazdar, G. 1982 Natural languages and
context-free languages. Linguist. Phil. 4, 471–504.
(doi:10.1007/BF00360802)

35 Pullum, G. K. 1985 On two recent attempts to show that
English is not a CFL. Comput. Linguist. 10, 182–186.

http://dx.doi.org/10.1016/S0304-3975(01)00349-8
http://dx.doi.org/10.1016/S0304-3975(01)00349-8
http://dx.doi.org/10.1126/science.274.5294.1926
http://dx.doi.org/10.1006/jmla.2000.2759
http://dx.doi.org/10.1006/jmla.2000.2759
http://dx.doi.org/10.1016/S0022-5371(67)80149-X
http://dx.doi.org/10.1016/S0022-5371(67)80149-X
http://dx.doi.org/10.1126/science.283.5398.77
http://dx.doi.org/10.1016/S0010-0277(99)00003-7
http://dx.doi.org/10.1016/S0010-0277(99)00003-7
http://dx.doi.org/10.2307/1970290
http://dx.doi.org/10.2307/1970290
http://dx.doi.org/10.1007/BF00360802

	Formal language theory: refining the Chomsky hierarchy
	Introduction
	The Chomsky Hierarchy
	Computably enumerable languages
	Context-sensitive languages
	Context-free languages
	Regular languages

	Where are natural languages located?
	Mildly context-sensitive languages
	Cognitive complexity
	Subregular languages
	Strictly local languages
	Probing the SL boundary
	Locally k-testable languages
	Probing the LT boundary
	FO(+1) definability: LTT
	Probing the LTT boundary
	FO(<) definability: SF
	Cognitive interpretation of SF

	Statistical models of language
	Some classic artificial grammars
	Designing and interpreting artificial grammar learning experiments
	Conclusion
	We thank William Tecumseh Fitch and the anonymous reviewers for immensely helpful comments on the draft version of this article.
	References

