
Chapter �

Finite Automata

This chapter introduces the class of languages known as �regular languages��
These languages are exactly the ones that can be described by nite automata�
which we sampled brie�y in Section ������ After an extended example that will
provide motivation for the study to follow� we dene nite automata formally�

As was mentioned earlier� a nite automaton has a set of states� and its
�control� moves from state to state in response to external �inputs�� One of
the crucial distinctions among classes of nite automata is whether that con	
trol is �deterministic�� meaning that the automaton cannot be in more than
one state at any one time� or �nondeterministic�� meaning that it may be in
several states at once� We shall discover that adding nondeterminism does
not let us dene any language that cannot be dened by a deterministic nite
automaton� but there can be substantial e�ciency in describing an application
using a nondeterministic automaton� In e�ect� nondeterminism allows us to
�program� solutions to problems using a higher	level language� The nondeter	
ministic nite automaton is then �compiled�� by an algorithm we shall learn
in this chapter� into a deterministic automaton that can be �executed� on a
conventional computer�

We conclude the chapter with a study of an extended nondeterministic aut	
omaton that has the additional choice of making a transition from one state to
another spontaneously� i�e�� on the empty string as �input�� These automata
also accept nothing but the regular languages� However� we shall nd them
quite important in Chapter �� when we study regular expressions and their
equivalence to automata�

The study of the regular languages continues in Chapter �� There� we in	
troduce another important way to describe regular languages� the algebraic
notation known as regular expressions� After discussing regular expressions�
and showing their equivalence to nite automata� we use both automata and
regular expressions as tools in Chapter � to show certain important properties
of the regular languages� Examples of such properties are the �closure� proper	
ties� which allow us to claim that one language is regular because one or more

��

�� CHAPTER �� FINITE AUTOMATA

other languages are known to be regular� and �decision� properties� The latter
are algorithms to answer questions about automata or regular expressions� e�g��
whether two automata or expressions represent the same language�

��� An Informal Picture of Finite Automata

In this section� we shall study an extended example of a real	world problem
whose solution uses nite automata in an important role� We investigate pro	
tocols that support �electronic money� � les that a customer can use to pay
for goods on the internet� and that the seller can receive with assurance that
the �money� is real� The seller must know that the le has not been forged�
nor has it been copied and sent to the seller� while the customer retains a copy
of the same le to spend again�

The nonforgeability of the le is something that must be assured by a bank
and by a cryptography policy� That is� a third player� the bank� must issue and
encrypt the �money� les� so that forgery is not a problem� However� the bank
has a second important job� it must keep a database of all the valid money
that it has issued� so that it can verify to a store that the le it has received
represents real money and can be credited to the store�s account� We shall not
address the cryptographic aspects of the problem� nor shall we worry about
how the bank can store and retrieve what could be billions of �electronic dollar
bills�� These problems are not likely to represent long	term impediments to the
concept of electronic money� and examples of its small	scale use have existed
since the late �����s�

However� in order to use electronic money� protocols need to be devised to
allow the manipulation of the money in a variety of ways that the users want�
Because monetary systems always invite fraud� we must verify whatever policy
we adopt regarding how money is used� That is� we need to prove the only
things that can happen are things we intend to happen � things that do not
allow an unscrupulous user to steal from others or to �manufacture� money�
In the balance of this section� we shall introduce a very simple example of a
�bad� electronic	money protocol� model it with nite automata� and show how
constructions on automata can be used to verify protocols �or� in this case� to
discover that the protocol has a bug��

����� The Ground Rules

There are three participants� the customer� the store� and the bank� We assume
for simplicity that there is only one �money� le in existence� The customer
may decide to transfer this money le to the store� which will then redeem the
le from the bank �i�e�� get the bank to issue a new money le belonging to the
store rather than the customer� and ship goods to the customer� In addition�
the customer has the option to cancel the le� That is� the customer may ask
the bank to place the money back in the customer�s account� making the money

���� AN INFORMAL PICTURE OF FINITE AUTOMATA ��

no longer spendable� Interaction among the three participants is thus limited
to ve events�

�� The customer may decide to pay� That is� the customer sends the money
to the store�

�� The customer may decide to cancel� The money is sent to the bank with
a message that the value of the money is to be added to the customer�s
bank account�

�� The store may ship goods to the customer�

�� The store may redeem the money� That is� the money is sent to the bank
with a request that its value be given to the store�

�� The bank may transfer the money by creating a new� suitably encrypted
money le and sending it to the store�

����� The Protocol

The three participants must design their behaviors carefully� or the wrong things
may happen� In our example� we make the reasonable assumption that the
customer cannot be relied upon to act responsibly� In particular� the customer
may try to copy the money le� use it to pay several times� or both pay and
cancel the money� thus getting the goods �for free��

The bank must behave responsibly� or it cannot be a bank� In particular� it
must make sure that two stores cannot both redeem the same money le� and
it must not allow money to be both canceled and redeemed� The store should
be careful as well� In particular� it should not ship goods until it is sure it has
been given valid money for the goods�

Protocols of this type can be represented as nite automata� Each state
represents a situation that one of the participants could be in� That is� the state
�remembers� that certain important events have happened and that others have
not yet happened� Transitions between states occur when one of the ve events
described above occur� We shall think of these events as �external� to the
automata representing the three participants� even though each participant is
responsible for initiating one or more of the events� It turns out that what is
important about the problem is what sequences of events can happen� not who
is allowed to initiate them�

Figure ��� represents the three participants by automata� In that diagram�
we show only the events that a�ect a participant� For example� the action pay
a�ects only the customer and store� The bank does not know that the money
has been sent by the customer to the store
 it discovers that fact only when the
store executes the action redeem�

Let us examine rst the automaton �c� for the bank� The start state is
state �
 it represents the situation where the bank has issued the money le in
question but has not been requested either to redeem it or to cancel it� If a

�� CHAPTER �� FINITE AUTOMATA

1 43

2

transferredeem

cancel

Start

a b

c

d f

e g

Start

(a) Store

(b) Customer (c) Bank

redeem transfer

ship ship

transferredeem

ship

pay

cancel

Start pay

Figure ���� Finite automata representing a customer� a store� and a bank

cancel request is sent to the bank by the customer� then the bank restores the
money to the customer�s account and enters state �� The latter state represents
the situation where the money has been cancelled� The bank� being responsible�
will not leave state � once it is entered� since the bank must not allow the same
money to be cancelled again or spent by the customer��

Alternatively� when in state � the bank may receive a redeem request from
the store� If so� it goes to state �� and shortly sends the store a transfer message�
with a new money le that now belongs to the store� After sending the transfer
message� the bank goes to state �� In that state� it will neither accept cancel or
redeem requests nor will it perform any other actions regarding this particular
money le�

Now� let us consider Fig� ����a�� the automaton representing the actions of
the store� While the bank always does the right thing� the store�s system has
some defects� Imagine that the shipping and nancial operations are done by
separate processes� so there is the opportunity for the ship action to be done
either before� after� or during the redemption of the electronic money� That
policy allows the store to get into a situation where it has already shipped the
goods and then nds out the money was bogus�

The store starts out in state a� When the customer orders the goods by

�You should remember that this entire discussion is about one single money �le� The bank
will in fact be running the same protocol with a large number of electronic pieces of money�
but the workings of the protocol are the same for each of them� so we can discuss the problem
as if there were only one piece of electronic money in existence�

���� AN INFORMAL PICTURE OF FINITE AUTOMATA ��

performing the pay action� the store enters state b� In this state� the store
begins both the shipping and redemption processes� If the goods are shipped
rst� then the store enters state c� where it must still redeem the money from
the bank and receive the transfer of an equivalent money le from the bank�
Alternatively� the store may send the redeem message rst� entering state d�
From state d� the store might next ship� entering state e� or it might next
receive the transfer of money from the bank� entering state f � From state f � we
expect that the store will eventually ship� putting the store in state g� where the
transaction is complete and nothing more will happen� In state e� the store is
waiting for the transfer from the bank� Unfortunately� the goods have already
been shipped� and if the transfer never occurs� the store is out of luck�

Last� observe the automaton for the customer� Fig� ����b�� This automaton
has only one state� re�ecting the fact that the customer �can do anything��
The customer can perform the pay and cancel actions any number of times� in
any order� and stays in the lone state after each action�

����� Enabling the Automata to Ignore Actions

While the three automata of Fig� ��� re�ect the behaviors of the three partici	
pants independently� there are certain transitions that are missing� For example�
the store is not a�ected by a cancel message� so if the cancel action is performed
by the customer� the store should remain in whatever state it is in� However� in
the formal denition of a nite automaton� which we shall study in Section ����
whenever an input X is received by an automaton� the automaton must follow
an arc labeled X from the state it is in to some new state� Thus� the automaton
for the store needs an additional arc from each state to itself� labeled cancel�
Then� whenever the cancel action is executed� the store automaton can make a
�transition� on that input� with the e�ect that it stays in the same state it was
in� Without these additional arcs� whenever the cancel action was executed the
store automaton would �die�
 that is� the automaton would be in no state at
all� and further actions by that automaton would be impossible�

Another potential problem is that one of the participants may� intentionally
or erroneously� send an unexpected message� and we do not want this action to
cause one of the automata to die� For instance� suppose the customer decided
to execute the pay action a second time� while the store was in state e� Since
that state has no arc out with label pay� the store�s automaton would die before
it could receive the transfer from the bank� In summary� we must add to the
automata of Fig� ��� loops on certain states� with labels for all those actions
that must be ignored when in that state
 the complete automata are shown
in Fig� ���� To save space� we combine the labels onto one arc� rather than
showing several arcs with the same heads and tails but di�erent labels� The
two kinds of actions that must be ignored are�

�� Actions that are irrelevant to the participant involved� As we saw� the
only irrelevant action for the store is cancel� so each of its seven states

�� CHAPTER �� FINITE AUTOMATA

cancel

1 43

2

transferredeem

cancel

Start

a b

c

d f

e g

Start

(a) Store

(b) Customer (c) Bank

ship shipship

redeem transfer

transferredeempay

pay, cancel
ship. redeem, transfer,

pay,
ship

pay, ship

pay,cancel pay,cancel pay,cancel

pay,cancel pay,cancel pay,cancel

cancel, ship cancel, ship
pay,redeem, pay,redeem,

Start

Figure ���� The complete sets of transitions for the three automata

has a loop labeled cancel� For the bank� both pay and ship are irrelevant�
so we have put at each of the bank�s states an arc labeled pay� ship� For
the customer� ship� redeem and transfer are all irrelevant� so we add arcs
with these labels� In e�ect� it stays in its one state on any sequence of
inputs� so the customer automaton has no e�ect on the operation of the
overall system� Of course� the customer is still a participant� since it is
the customer who initiates the pay and cancel actions� However� as we
mentioned� the matter of who initiates actions has nothing to do with the
behavior of the automata�

�� Actions that must not be allowed to kill an automaton� As mentioned� we
must not allow the customer to kill the store�s automaton by executing pay
again� so we have added loops with label pay to all but state a �where the
pay action is expected and relevant�� We have also added loops with labels
cancel to states � and � of the bank� in order to prevent the customer from
killing the bank�s automaton by trying to cancel money that has already
been redeemed� The bank properly ignores such a request� Likewise�
states � and � have loops on redeem� The store should not try to redeem
the same money twice� but if it does� the bank properly ignores the second
request�

���� AN INFORMAL PICTURE OF FINITE AUTOMATA ��

����� The Entire System as an Automaton

While we now have models for how the three participants behave� we do not
yet have a representation for the interaction of the three participants� As men	
tioned� because the customer has no constraints on behavior� that automaton
has only one state� and any sequence of events lets it stay in that state
 i�e�� it is
not possible for the system as a whole to �die� because the customer automaton
has no response to an action� However� both the store and bank behave in a
complex way� and it is not immediately obvious in what combinations of states
these two automata can be�

The normal way to explore the interaction of automata such as these is to
construct the product automaton� That automaton�s states represent a pair of
states� one from the store and one from the bank� For instance� the state ��� d�
of the product automaton represents the situation where the bank is in state
�� and the store is in state d� Since the bank has four states and the store has
seven� the product automaton has �� � � �� states�

We show the product automaton in Fig� ���� For clarity� we have arranged
the �� states in an array� The row corresponds to the state of the bank and
the column to the state of the store� To save space� we have also abbreviated
the labels on the arcs� with P � S� C� R� and T standing for pay� ship� cancel�
redeem� and transfer� respectively�

C C C C C C C

P P P P P P

P P P P P P

P,C P,C

P,C P,C P,C P,C P,C P,CC

C

P S SS

P S SS

P SS

P S SS

a b c d e f g

1

2

3

4

Start

P,C

P,C P,CP,C

R

R

S

T

T

R

R
R

R

Figure ���� The product automaton for the store and bank

To construct the arcs of the product automaton� we need to run the bank
and store automata �in parallel�� Each of the two components of the product
automaton independently makes transitions on the various inputs� However� it
is important to notice that if an input action is received� and one of the two

�� CHAPTER �� FINITE AUTOMATA

automata has no state to go to on that input� then the product automaton
�dies�
 it has no state to go to�

To make this rule for state transitions precise� suppose the product automa	
ton is in state �i� x�� That state corresponds to the situation where the bank
is in state i and the store in state x� Let Z be one of the input actions� We
look at the automaton for the bank� and see whether there is a transition out
of state i with label Z� Suppose there is� and it leads to state j �which might
be the same as i if the bank loops on input Z�� Then� we look at the store and
see if there is an arc labeled Z leading to some state y� If both j and y exist�
then the product automaton has an arc from state �i� x� to state �j� y�� labeled
Z� If either of states j or y do not exist �because the bank or store has no arc
out of i or x� respectively� for input Z�� then there is no arc out of �i� x� labeled
Z�

We can now see how the arcs of Fig� ��� were selected� For instance� on
input pay� the store goes from state a to b� but stays put if it is in any other
state besides a� The bank stays in whatever state it is in when the input is
pay� because that action is irrelevant to the bank� This observation explains
the four arcs labeled P at the left ends of the four rows in Fig� ���� and the
loops labeled P on other states�

For another example of how the arcs are selected� consider the input redeem�
If the bank receives a redeem message when in state �� it goes to state �� If in
states � or �� it stays there� while in state � the bank automaton dies
 i�e�� it has
nowhere to go� The store� on the other hand� can make transitions from state
b to d or from c to e when the redeem input is received� In Fig� ���� we see six
arcs labeled redeem� corresponding to the six combinations of three bank states
and two store states that have outward	bound arcs labeled R� For example� in
state ��� b�� the arc labeled R takes the automaton to state ��� d�� since redeem
takes the bank from state � to � and the store from b to d� As another example�
there is an arc labeled R from ��� c� to ��� e�� since redeem takes the bank from
state � back to state �� while it takes the store from state c to state e�

����
 Using the Product Automaton to Validate the
Protocol

Figure ��� tells us some interesting things� For instance� of the �� states� only
ten of them can be reached from the start state� which is ��� a� � the combi	
nation of the start states of the bank and store automata� Notice that states
like ��� e� and ��� d� are not accessible� that is� there is no path to them from
the start state� Inaccessible states need not be included in the automaton� and
we did so in this example just to be systematic�

However� the real purpose of analyzing a protocol such as this one using
automata is to ask and answer questions that mean �can the following type
of error occur�� In the example at hand� we might ask whether it is possible
that the store can ship goods and never get paid� That is� can the product
automaton get into a state in which the store has shipped �that is� the state is

���� DETERMINISTIC FINITE AUTOMATA ��

in column c� e� or g�� and yet no transition on input T was ever made or will
be made�

For instance� in state ��� e�� the goods have shipped� but there will eventu	
ally be a transition on input T to state ��� g�� In terms of what the bank is
doing� once it has gotten to state �� it has received the redeem request and pro	
cessed it� That means it must have been in state � before receiving the redeem
and therefore the cancel message had not been received and will be ignored if
received in the future� Thus� the bank will eventually perform the transfer of
money to the store�

However� state ��� c� is a problem� The state is accessible� but the only arc
out leads back to that state� This state corresponds to a situation where the
bank received a cancel message before a redeem message� However� the store
received a pay message
 i�e�� the customer was being duplicitous and has both
spent and canceled the same money� The store foolishly shipped before trying
to redeem the money� and when the store does execute the redeem action� the
bank will not even acknowledge the message� because it is in state �� where it
has canceled the money and will not process a redeem request�

��� Deterministic Finite Automata

Now it is time to present the formal notion of a nite automaton� so that we
may start to make precise some of the informal arguments and descriptions that
we saw in Sections ����� and ���� We begin by introducing the formalism of a
deterministic nite automaton� one that is in a single state after reading any
sequence of inputs� The term �deterministic� refers to the fact that on each
input there is one and only one state to which the automaton can transition from
its current state� In contrast� �nondeterministic� nite automata� the subject of
Section ���� can be in several states at once� The term �nite automaton� will
refer to the deterministic variety� although we shall use �deterministic� or the
abbreviation DFA normally� to remind the reader of which kind of automaton
we are talking about�

����� De�nition of a Deterministic Finite Automaton

A deterministic �nite automaton consists of�

�� A nite set of states� often denoted Q�

�� A nite set of input symbols� often denoted ��

�� A transition function that takes as arguments a state and an input symbol
and returns a state� The transition function will commonly be denoted ��
In our informal graph representation of automata� � was represented by
arcs between states and the labels on the arcs� If q is a state� and a is an

�� CHAPTER �� FINITE AUTOMATA

input symbol� then ��q� a� is that state p such that there is an arc labeled
a from q to p��

�� A start state� one of the states in Q�

�� A set of �nal or accepting states F � The set F is a subset of Q�

A deterministic nite automaton will often be referred to by its acronym� DFA�
The most succinct representation of a DFA is a listing of the ve components
above� In proofs we often talk about a DFA in �ve	tuple� notation�

A � �Q��� �� q�� F �

where A is the name of the DFA� Q is its set of states� � its input symbols� �
its transition function� q� its start state� and F its set of accepting states�

����� How a DFA Processes Strings

The rst thing we need to understand about a DFA is how the DFA decides
whether or not to �accept� a sequence of input symbols� The �language� of
the DFA is the set of all strings that the DFA accepts� Suppose a�a� � � � an is a
sequence of input symbols� We start out with the DFA in its start state� q�� We
consult the transition function �� say ��q�� a�� � q� to nd the state that the
DFA A enters after processing the rst input symbol a�� We process the next
input symbol� a�� by evaluating ��q�� a��
 let us suppose this state is q�� We
continue in this manner� nding states q�� q�� � � � � qn such that ��qi��� ai� � qi
for each i� If qn is a member of F � then the input a�a� � � � an is accepted� and
if not then it is �rejected��

Example ��� � Let us formally specify a DFA that accepts all and only the
strings of ��s and ��s that have the sequence �� somewhere in the string� We
can write this language L as�

fw j w is of the form x��y for some strings
x and y consisting of ��s and ��s onlyg

Another equivalent description� using parameters x and y to the left of the
vertical bar� is�

fx��y j x and y are any strings of ��s and ��sg

Examples of strings in the language include ��� ������ and ������� Examples
of strings not in the language include �� �� and �������

What do we know about an automaton that can accept this language L�
First� its input alphabet is � � f�� �g� It has some set of states� Q� of which
one� say q�� is the start state� This automaton has to remember the important
facts about what inputs it has seen so far� To decide whether �� is a substring
of the input� A needs to remember�

�More accurately� the graph is a picture of some transition function �� and the arcs of the
graph are constructed to re�ect the transitions speci�ed by ��

���� DETERMINISTIC FINITE AUTOMATA ��

�� Has it already seen ��� If so� then it accepts every sequence of further
inputs
 i�e�� it will only be in accepting states from now on�

�� Has it never seen ��� but its most recent input was �� so if it now sees a
�� it will have seen �� and can accept everything it sees from here on�

�� Has it never seen ��� but its last input was either nonexistent �it just
started� or it last saw a �� In this case� A cannot accept until it rst sees
a � and then sees a � immediately after�

These three conditions can each be represented by a state� Condition ��� is
represented by the start state� q�� Surely� when just starting� we need to see
a � and then a �� But if in state q� we next see a �� then we are no closer to
seeing ��� and so we must stay in state q�� That is� ��q�� �� � q��

However� if we are in state q� and we next see a �� we are in condition ����
That is� we have never seen ��� but we have our �� Thus� let us use q� to
represent condition ���� Our transition from q� on input � is ��q�� �� � q��

Now� let us consider the transitions from state q�� If we see a �� we are no
better o� than we were� but no worse either� We have not seen ��� but � was
the last symbol� so we are still waiting for a �� State q� describes this situation
perfectly� so we want ��q�� �� � q�� If we are in state q� and we see a � input�
we now know there is a � followed by a �� We can go to an accepting state�
which we shall call q�� and which corresponds to condition ��� above� That is�
��q�� �� � q��

Finally� we must design the transitions for state q�� In this state� we have
already seen a �� sequence� so regardless of what happens� we shall still be in
a situation where we�ve seen ��� That is� ��q�� �� � ��q�� �� � q��

Thus� Q � fq�� q�� q�g� As we said� q� is the start state� and the only
accepting state is q�
 that is� F � fq�g� The complete specication of the
automaton A that accepts the language L of strings that have a �� substring�
is

A � �fq�� q�� q�g� f�� �g� �� q�� fq�g�

where � is the transition function described above� �

����� Simpler Notations for DFA�s

Specifying a DFA as a ve	tuple with a detailed description of the � transition
function is both tedious and hard to read� There are two preferred notations
for describing automata�

�� A transition diagram� which is a graph such as the ones we saw in Sec	
tion ����

�� A transition table� which is a tabular listing of the � function� which by
implication tells us the set of states and the input alphabet�

�� CHAPTER �� FINITE AUTOMATA

Transition Diagrams

A transition diagram for a DFA A � �Q��� �� q�� F � is a graph dened as follows�

a� For each state in Q there is a node�

b� For each state q in Q and each input symbol a in �� let ��q� a� � p�
Then the transition diagram has an arc from node q to node p� labeled
a� If there are several input symbols that cause transitions from q to p�
then the transition diagram can have one arc� labeled by the list of these
symbols�

c� There is an arrow into the start state q�� labeled Start� This arrow does
not originate at any node�

d� Nodes corresponding to accepting states �those in F � are marked by a
double circle� States not in F have a single circle�

Example ��� � Figure ��� shows the transition diagram for the DFA that we
designed in Example ���� We see in that diagram the three nodes that cor	
respond to the three states� There is a Start arrow entering the start state�
q�� and the one accepting state� q�� is represented by a double circle� Out of
each state is one arc labeled � and one arc labeled � �although the two arcs
are combined into one with a double label in the case of q��� The arcs each
correspond to one of the � facts developed in Example ���� �

1 0

0 1q0 q2 q1 0, 1
Start

Figure ���� The transition diagram for the DFA accepting all strings with a
substring ��

Transition Tables

A transition table is a conventional� tabular representation of a function like �
that takes two arguments and returns a value� The rows of the table correspond
to the states� and the columns correspond to the inputs� The entry for the row
corresponding to state q and the column corresponding to input a is the state
��q� a��

Example ��� � The transition table corresponding to the function � of Ex	
ample ��� is shown in Fig� ���� We have also shown two other features of a
transition table� The start state is marked with an arrow� and the accepting
states are marked with a star� Since we can deduce the sets of states and in	
put symbols by looking at the row and column heads� we can now read from

���� DETERMINISTIC FINITE AUTOMATA ��

the transition table all the information we need to specify the nite automaton
uniquely� �

� �

� q� q� q�
q� q� q�
q� q� q�

Figure ���� Transition table for the DFA of Example ���

����� Extending the Transition Function to Strings

We have explained informally that the DFA denes a language� the set of all
strings that result in a sequence of state transitions from the start state to an
accepting state� In terms of the transition diagram� the language of a DFA
is the set of labels along all the paths that lead from the start state to any
accepting state�

Now� we need to make the notion of the language of a DFA precise� To do
so� we dene an extended transition function that describes what happens when
we start in any state and follow any sequence of inputs� If � is our transition
function� then the extended transition function constructed from � will be called
 �� The extended transition function is a function that takes a state q and a
string w and returns a state p � the state that the automaton reaches when
starting in state q and processing the sequence of inputs w� We dene � by
induction on the length of the input string� as follows�

BASIS� ��q� �� � q� That is� if we are in state q and read no inputs� then we
are still in state q�

INDUCTION� Suppose w is a string of the form xa
 that is� a is the last symbol
of w� and x is the string consisting of all but the last symbol�� For example�
w � ���� is broken into x � ��� and a � �� Then

 ��q� w� � �
�
 ��q� x�� a

�
�����

Now ����� may seem like a lot to take in� but the idea is simple� To compute
 ��q� w�� rst compute ��q� x�� the state that the automaton is in after processing

all but the last symbol of w� Suppose this state is p
 that is� ��q� x� � p� Then
 ��q� w� is what we get by making a transition from state p on input a� the last

symbol of w� That is� ��q� w� � ��p� a��

�Recall our convention that letters at the beginning of the alphabet are symbols� and those
near the end of the alphabet are strings� We need that convention to make sense of the phrase
�of the form xa��

�� CHAPTER �� FINITE AUTOMATA

Example ��� � Let us design a DFA to accept the language

L � fw j w has both an even number of ��s and an even number of ��sg

It should not be surprising that the job of the states of this DFA is to count
both the number of ��s and the number of ��s� but count them modulo �� That
is� the state is used to remember whether the number of ��s seen so far is even or
odd� and also to remember whether the number of ��s seen so far is even or odd�
There are thus four states� which can be given the following interpretations�

q�� Both the number of ��s seen so far and the number of ��s seen so far are
even�

q�� The number of ��s seen so far is even� but the number of ��s seen so far is
odd�

q�� The number of ��s seen so far is even� but the number of ��s seen so far is
odd�

q�� Both the number of ��s seen so far and the number of ��s seen so far are
odd�

State q� is both the start state and the lone accepting state� It is the start
state� because before reading any inputs� the numbers of ��s and ��s seen so
far are both zero� and zero is even� It is the only accepting state� because it
describes exactly the condition for a sequence of ��s and ��s to be in language
L�

q q

q q

0 1

2 3

Start

0

0

1

1

0

0

1

1

Figure ���� Transition diagram for the DFA of Example ���

We now know almost how to specify the DFA for language L� It is

A � �fq�� q�� q�� q�g� f�� �g� �� q�� fq�g�

where the transition function � is described by the transition diagram of Fig� ����
Notice how each input � causes the state to cross the horizontal� dashed line�
Thus� after seeing an even number of ��s we are always above the line� in state

���� DETERMINISTIC FINITE AUTOMATA ��

q� or q� while after seeing an odd number of ��s we are always below the line�
in state q� or q�� Likewise� every � causes the state to cross the vertical� dashed
line� Thus� after seeing an even number of ��s� we are always to the left� in state
q� or q�� while after seeing an odd number of ��s we are to the right� in state q�
or q�� These observations are an informal proof that the four states have the
interpretations attributed to them� However� one could prove the correctness
of our claims about the states formally� by a mutual induction in the spirit of
Example �����

We can also represent this DFA by a transition table� Figure ��� shows this
table� However� we are not just concerned with the design of this DFA
 we
want to use it to illustrate the construction of � from its transition function ��
Suppose the input is ������� Since this string has even numbers of ��s and ��s
both� we expect it is in the language� Thus� we expect that ��q�� ������� � q��
since q� is the only accepting state� Let us now verify that claim�

� �

 � q� q� q�
q� q� q�
q� q� q�
q� q� q�

Figure ���� Transition table for the DFA of Example ���

The check involves computing ��q�� w� for each prex w of ������� starting
at � and going in increasing size� The summary of this calculation is�

� ��q�� �� � q��

� ��q�� �� � �
�
 ��q�� ��� �

�
� ��q�� �� � q��

� ��q�� ��� � �
�
 ��q�� ��� �

�
� ��q�� �� � q��

� ��q�� ���� � �
�
 ��q�� ���� �

�
� ��q�� �� � q��

� ��q�� ����� � �
�
 ��q�� ����� �

�
� ��q�� �� � q��

� ��q�� ������ � �
�
 ��q�� ������ �

�
� ��q�� �� � q��

� ��q�� ������� � �
�
 ��q�� ������� �

�
� ��q�� �� � q��

�

�� CHAPTER �� FINITE AUTOMATA

Standard Notation and Local Variables

After reading this section� you might imagine that our customary notation
is required
 that is� you must use � for the transition function� use A for
the name of a DFA� and so on� We tend to use the same variables to
denote the same thing across all examples� because it helps to remind you
of the types of variables� much the way a variable i in a program is almost
always of integer type� However� we are free to call the components of an
automaton� or anything else� anything we wish� Thus� you are free to call
a DFA M and its transition function T if you like�

Moreover� you should not be surprised that the same variable means
di�erent things in di�erent contexts� For example� the DFA�s of Examples
��� and ��� both were given a transition function called �� However� the
two transition functions are each local variables� belonging only to their
examples� These two transition functions are very di�erent and bear no
relationship to one another�

����
 The Language of a DFA

Now� we can dene the language of a DFA A � �Q��� �� q�� F �� This language
is denoted L�A�� and is dened by

L�A� � fw j ��q�� w� is in Fg

That is� the language of A is the set of strings w that take the start state q� to
one of the accepting states� If L is L�A� for some DFA A� then we say L is a
regular language�

Example ��� � As we mentioned earlier� if A is the DFA of Example ���� then
L�A� is the set of all strings of ��s and ��s that contain a substring ��� If A is
instead the DFA of Example ���� then L�A� is the set of all strings of ��s and
��s whose numbers of ��s and ��s are both even� �

����� Exercises for Section ���

Exercise ����� � In Fig� ��� is a marble	rolling toy� A marble is dropped at
A or B� Levers x�� x�� and x� cause the marble to fall either to the left or to
the right� Whenever a marble encounters a lever� it causes the lever to reverse
after the marble passes� so the next marble will take the opposite branch�

� a� Model this toy by a nite automaton� Let the inputs A and B represent
the input into which the marble is dropped� Let acceptance correspond
to the marble exiting at D
 nonacceptance represents a marble exiting at
C�

���� DETERMINISTIC FINITE AUTOMATA ��

A B

C D

x

xx
3

2

1

Figure ���� A marble	rolling toy

� b� Informally describe the language of the automaton�

c� Suppose that instead the levers switched before allowing the marble to
pass� How would your answers to parts �a� and �b� change�

�� Exercise ����� � We dened � by breaking the input string into any string
followed by a single symbol �in the inductive part� Equation ����� However� we

informally think of � as describing what happens along a path with a certain
string of labels� and if so� then it should not matter how we break the input
string in the denition of �� Show that in fact� ��q� xy� � �

�
 ��q� x�� y

�
for any

state q and strings x and y� Hint � Perform an induction on jyj�

� Exercise ����� � Show that for any state q� string x� and input symbol a�
 ��q� ax� � �

�
��q� a�� x

�
� Hint � Use Exercise ������

Exercise ����� � Give DFA�s accepting the following languages over the alpha	
bet f�� �g�

� a� The set of all strings ending in ���

b� The set of all strings with three consecutive ��s �not necessarily at the
end��

c� The set of strings with ��� as a substring�

� Exercise ����� � Give DFA�s accepting the following languages over the alpha	
bet f�� �g�

a� The set of all strings such that each block of ve consecutive symbols
contains at least two ��s�

�� CHAPTER �� FINITE AUTOMATA

b� The set of all strings whose tenth symbol from the right end is a ��

c� The set of strings that either begin or end �or both� with ���

d� The set of strings such that the number of ��s is divisible by ve� and the
number of ��s is divisible by ��

�� Exercise ����
 � Give DFA�s accepting the following languages over the alpha	
bet f�� �g�

� a� The set of all strings beginning with a � that� when interpreted as a binary
integer� is a multiple of �� For example� strings ���� ����� and ���� are
in the language
 �� ���� and ��� are not�

b� The set of all strings that� when interpreted in reverse as a binary inte	
ger� is divisible by �� Examples of strings in the language are �� ������
�������� and �����

Exercise ����� � Let A be a DFA and q a particular state of A� such that
��q� a� � q for all input symbols a� Show by induction on the length of the

input that for all input strings w� ��q� w� � q�

Exercise ����� � Let A be a DFA and a a particular input symbol of A� such
that for all states q of A we have ��q� a� � q�

a� Show by induction on n that for all n � �� ��q� an� � q� where an is the
string consisting of n a�s�

b� Show that either fag� � L�A� or fag� � L�A� � ��

�� Exercise ���� � Let A � �Q��� �� q�� fqfg� be a DFA� and suppose that for all
a in � we have ��q�� a� � ��qf � a��

a� Show that for all w �� � we have ��q�� w� � ��qf � w��

b� Show that if x is a nonempty string in L�A�� then for all k � �� xk �i�e��
x written k times� is also in L�A��

�� Exercise ������ � Consider the DFA with the following transition table�

� �

� A A B
B B A

Informally describe the language accepted by this DFA� and prove by induction
on the length of an input string that your description is correct� Hint � When
setting up the inductive hypothesis� it is wise to make a statement about what
inputs get you to each state� not just what inputs get you to the accepting
state�

���� NONDETERMINISTIC FINITE AUTOMATA ��

� Exercise ������ � Repeat Exercise ������ for the following transition table�

� �

� A B A
B C A
C C C

��� Nondeterministic Finite Automata

A �nondeterministic� nite automaton �NFA� has the power to be in several
states at once� This ability is often expressed as an ability to �guess� something
about its input� For instance� when the automaton is used to search for certain
sequences of characters �e�g�� keywords� in a long text string� it is helpful to
�guess� that we are at the beginning of one of those strings and use a sequence of
states to do nothing but check that the string appears� character by character�
We shall see an example of this type of application in Section ����

Before examining applications� we need to dene nondeterministic nite
automata and show that each one accepts a language that is also accepted by
some DFA� That is� the NFA�s accept exactly the regular languages� just as
DFA�s do� However� there are reasons to think about NFA�s� They are often
more succinct and easier to design than DFA�s� Moreover� while we can always
convert an NFA to a DFA� the latter may have exponentially more states than
the NFA
 fortunately� cases of this type are rare�

����� An Informal View of Nondeterministic Finite
Automata

Like the DFA� an NFA has a nite set of states� a nite set of input symbols�
one start state and a set of accepting states� It also has a transition function�
which we shall commonly call �� The di�erence between the DFA and the NFA
is in the type of �� For the NFA� � is a function that takes a state and input
symbol as arguments �like the DFA�s transition function�� but returns a set
of zero� one� or more states �rather than returning exactly one state� as the
DFA must�� We shall start with an example of an NFA� and then make the
denitions precise�

Example ��
 � Figure ��� shows a nondeterministic nite automaton� whose
job is to accept all and only the strings of ��s and ��s that end in ��� State
q� is the start state� and we can think of the automaton as being in state q�
�perhaps among other states� whenever it has not yet �guessed� that the nal
�� has begun� It is always possible that the next symbol does not begin the
nal ��� even if that symbol is �� Thus� state q� may transition to itself on both
� and ��

However� if the next symbol is �� this NFA also guesses that the nal �� has
begun� An arc labeled � thus leads from q� to state q�� Notice that there are

�� CHAPTER �� FINITE AUTOMATA

Start 0 1q0 q q

0, 1

1 2

Figure ���� An NFA accepting all strings that end in ��

two arcs labeled � out of q�� The NFA has the option of going either to q� or
to q�� and in fact it does both� as we shall see when we make the denitions
precise� In state q�� the NFA checks that the next symbol is �� and if so� it goes
to state q� and accepts�

Notice that there is no arc out of q� labeled �� and there are no arcs at all
out of q�� In these situations� the thread of the NFA�s existence corresponding
to those states simply �dies�� although other threads may continue to exist�
While a DFA has exactly one arc out of each state for each input symbol� an
NFA has no such constraint
 we have seen in Fig� ��� cases where the number
of arcs is zero� one� and two� for example�

q0

q2

q0 q0 q0 q0 q0

q1q1 q1

q2

0 0 1 0 1

(stuck)

(stuck)

Figure ����� The states an NFA is in during the processing of input sequence
�����

Figure ���� suggests how an NFA processes inputs� We have shown what
happens when the automaton of Fig� ��� receives the input sequence ������ It
starts in only its start state� q�� When the rst � is read� the NFA may go to
either state q� or state q�� so it does both� These two threads are suggested by
the second column in Fig� �����

Then� the second � is read� State q� may again go to both q� and q��
However� state q� has no transition on �� so it �dies�� When the third input� a
�� occurs� we must consider transitions from both q� and q�� We nd that q�
goes only to q� on �� while q� goes only to q�� Thus� after reading ���� the NFA
is in states q� and q�� Since q� is an accepting state� the NFA accepts ����

However� the input is not nished� The fourth input� a �� causes q��s thread
to die� while q� goes to both q� and q�� The last input� a �� sends q� to q� and
q� to q�� Since we are again in an accepting state� ����� is accepted� �

���� NONDETERMINISTIC FINITE AUTOMATA ��

����� De�nition of Nondeterministic Finite Automata

Now� let us introduce the formal notions associated with nondeterministic nite
automata� The di�erences between DFA�s and NFA�s will be pointed out as we
do� An NFA is represented essentially like a DFA�

A � �Q��� �� q�� F �

where�

�� Q is a nite set of states�

�� � is a nite set of input symbols�

�� q�� a member of Q� is the start state�

�� F � a subset of Q� is the set of �nal �or accepting� states�

�� �� the transition function is a function that takes a state in Q and an
input symbol in � as arguments and returns a subset of Q� Notice that
the only di�erence between an NFA and a DFA is in the type of value
that � returns� a set of states in the case of an NFA and a single state in
the case of a DFA�

Example ��� � The NFA of Fig� ��� can be specied formally as

�fq�� q�� q�g� f�� �g� �� q�� fq�g�

where the transition function � is given by the transition table of Fig� ����� �

� �

� q� fq�� q�g fq�g
q� � fq�g
q� � �

Figure ����� Transition table for an NFA that accepts all strings ending in ��

Notice that transition tables can be used to specify the transition function
for an NFA as well as for a DFA� The only di�erence is that each entry in the
table for the NFA is a set� even if the set is a singleton �has one member�� Also
notice that when there is no transition at all from a given state on a given input
symbol� the proper entry is �� the empty set�

�� CHAPTER �� FINITE AUTOMATA

����� The Extended Transition Function

As for DFA�s� we need to extend the transition function � of an NFA to a
function � that takes a state q and a string of input symbols w� and returns the
set of states that the NFA is in if it starts in state q and processes the string w�
The idea was suggested by Fig� ����
 in essence ��q� w� is the column of states
found after reading w� if q is the lone state in the rst column� For instance�
Fig� ���� suggests that ��q�� ���� � fq�� q�g� Formally� we dene � for an NFA�s
transition function � by�

BASIS� ��q� �� � fqg� That is� without reading any input symbols� we are only
in the state we began in�

INDUCTION� Suppose w is of the form w � xa� where a is the nal symbol of
w and x is the rest of w� Also suppose that ��q� x� � fp�� p�� � � � � pkg� Let

k�
i��

��pi� a� � fr�� r�� � � � � rmg

Then ��q� w� � fr�� r�� � � � � rmg� Less formally� we compute ��q� w� by rst

computing ��q� x�� and by then following any transition from any of these states
that is labeled a�

Example ��� � Let us use � to describe the processing of input ����� by the
NFA of Fig� ���� A summary of the steps is�

�� ��q�� �� � fq�g�

�� ��q�� �� � ��q�� �� � fq�� q�g�

�� ��q�� ��� � ��q�� �� � ��q�� �� � fq�� q�g � � � fq�� q�g�

�� ��q�� ���� � ��q�� �� � ��q�� �� � fq�g � fq�g � fq�� q�g�

�� ��q�� ����� � ��q�� �� � ��q�� �� � fq�� q�g � � � fq�� q�g�

�� ��q�� ������ � ��q�� �� � ��q�� �� � fq�g � fq�g � fq�� q�g�

Line ��� is the basis rule� We obtain line ��� by applying � to the lone state� q��
that is in the previous set� and get fq�� q�g as a result� Line ��� is obtained by
taking the union over the two states in the previous set of what we get when we
apply � to them with input �� That is� ��q�� �� � fq�� q�g� while ��q�� �� � ��
For line ���� we take the union of ��q�� �� � fq�g and ��q�� �� � fq�g� Lines ���
and ��� are similar to lines ��� and ���� �

���� NONDETERMINISTIC FINITE AUTOMATA ��

����� The Language of an NFA

As we have suggested� an NFA accepts a string w if it is possible to make any
sequence of choices of next state� while reading the characters of w� and go from
the start state to any accepting state� The fact that other choices using the
input symbols of w lead to a nonaccepting state� or do not lead to any state at
all �i�e�� the sequence of states �dies��� does not prevent w from being accepted
by the NFA as a whole� Formally� if A � �Q��� �� q�� F � is an NFA� then

L�A� � fw j ��q�� w� � F �� �g

That is� L�A� is the set of strings w in �� such that ��q�� w� contains at least
one accepting state�

Example �� � As an example� let us prove formally that the NFA of Fig� ���
accepts the language L � fw j w ends in ��g� The proof is a mutual induction
of the following three statements that characterize the three states�

�� ��q�� w� contains q� for every w�

�� ��q�� w� contains q� if and only if w ends in ��

�� ��q�� w� contains q� if and only if w ends in ���

To prove these statements� we need to consider how A can reach each state
 i�e��
what was the last input symbol� and in what state was A just before reading
that symbol�

Since the language of this automaton is the set of strings w such that ��q�� w�
contains q� �because q� is the only accepting state�� the proof of these three
statements� in particular the proof of ���� guarantees that the language of this
NFA is the set of strings ending in ��� The proof of the theorem is an induction
on jwj� the length of w� starting with length ��

BASIS� If jwj � �� then w � �� Statement ��� says that ��q�� �� contains q��

which it does by the basis part of the denition of �� For statement ���� we

know that � does not end in �� and we also know that ��q�� �� does not contain

q�� again by the basis part of the denition of �� Thus� the hypotheses of both
directions of the if	and	only	if statement are false� and therefore both directions
of the statement are true� The proof of statement ��� for w � � is essentially
the same as the above proof for statement ����

INDUCTION� Assume that w � xa� where a is a symbol� either � or �� We
may assume statements ��� through ��� hold for x� and we need to prove them
for w� That is� we assume jwj � n � �� so jxj � n� We assume the inductive
hypothesis for n and prove it for n� ��

�� We know that ��q�� x� contains q�� Since there are transitions on both

� and � from q� to itself� it follows that ��q�� w� also contains q�� so
statement ��� is proved for w�

�� CHAPTER �� FINITE AUTOMATA

�� �If� Assume that w ends in �
 i�e�� a � �� By statement ��� applied to x�

we know that ��q�� x� contains q�� Since there is a transition from q� to

q� on input �� we conclude that ��q�� w� contains q��

�Only	if� Suppose ��q�� w� contains q�� If we look at the diagram of
Fig� ���� we see that the only way to get into state q� is if the input
sequence w is of the form x�� That is enough to prove the �only	if�
portion of statement ����

�� �If� Assume that w ends in ��� Then if w � xa� we know that a � � and

x ends in �� By statement ��� applied to x� we know that ��q�� x� contains
q�� Since there is a transition from q� to q� on input �� we conclude that
 ��q�� w� contains q��

�Only	if� Suppose ��q�� w� contains q�� Looking at the diagram of Fig� ����
we discover that the only way to get to state q� is for w to be of the form
x�� where ��q�� x� contains q�� By statement ��� applied to x� we know
that x ends in �� Thus� w ends in ��� and we have proved statement ����

�

����
 Equivalence of Deterministic and Nondeterministic
Finite Automata

Although there are many languages for which an NFA is easier to construct
than a DFA� such as the language �Example ���� of strings that end in ��� it is
a surprising fact that every language that can be described by some NFA can
also be described by some DFA� Moreover� the DFA in practice has about as
many states as the NFA� although it often has more transitions� In the worst
case� however� the smallest DFA can have �n states while the smallest NFA for
the same language has only n states�

The proof that DFA�s can do whatever NFA�s can do involves an important
�construction� called the subset construction because it involves constructing all
subsets of the set of states of the NFA� In general� many proofs about automata
involve constructing one automaton from another� It is important for us to
observe the subset construction as an example of how one formally describes one
automaton in terms of the states and transitions of another� without knowing
the specics of the latter automaton�

The subset construction starts from an NFA N � �QN ��� �N � q�� FN �� Its
goal is the description of a DFA D � �QD��� �D� fq�g� FD� such that L�D� �
L�N�� Notice that the input alphabets of the two automata are the same� and
the start state of D is the set containing only the start state of N � The other
components of D are constructed as follows�

� QD is the set of subsets of QN
 i�e�� QD is the power set of QN � Note
that if QN has n states� then QD will have �n states� Often� not all these
states are accessible from the start state of QD� Inaccessible states can

���� NONDETERMINISTIC FINITE AUTOMATA ��

be �thrown away�� so e�ectively� the number of states of D may be much
smaller than �n�

� FD is the set of subsets S of QN such that S � FN �� �� That is� FD is
all sets of N �s states that include at least one accepting state of N �

� For each set S � QN and for each input symbol a in ��

�D�S� a� �
�

p in S

�N �p� a�

That is� to compute �D�S� a� we look at all the states p in S� see what
states N goes to from p on input a� and take the union of all those states�

� �

� � �
� fq�g fq�� q�g fq�g
fq�g � fq�g
fq�g � �

fq�� q�g fq�� q�g fq�� q�g
fq�� q�g fq�� q�g fq�g
fq�� q�g � fq�g

fq�� q�� q�g fq�� q�g fq�� q�g

Figure ����� The complete subset construction from Fig� ���

Example ���� � Let N be the automaton of Fig� ��� that accepts all strings
that end in ��� Since N �s set of states is fq�� q�� q�g� the subset construction
produces a DFA with �� � � states� corresponding to all the subsets of these
three states� Figure ���� shows the transition table for these eight states
 we
shall show shortly the details of how some of these entries are computed�

Notice that this transition table belongs to a deterministic nite automaton�
Even though the entries in the table are sets� the states of the constructed DFA
are sets� To make the point clearer� we can invent new names for these states�
e�g�� A for �� B for fq�g� and so on� The DFA transition table of Fig ���� denes
exactly the same automaton as Fig� ����� but makes clear the point that the
entries in the table are single states of the DFA�

Of the eight states in Fig� ����� starting in the start state B� we can only
reach states B� E� and F � The other ve states are inaccessible from the start
state and may as well not be there� We often can avoid the exponential	time step
of constructing transition	table entries for every subset of states if we perform
�lazy evaluation� on the subsets� as follows�

BASIS� We know for certain that the singleton set consisting only of N �s start
state is accessible�

�� CHAPTER �� FINITE AUTOMATA

� �

A A A
� B E B

C A D
D A A
E E F
F E B
G A D
H E F

Figure ����� Renaming the states of Fig� ����

INDUCTION� Suppose we have determined that set S of states is accessible�
Then for each input symbol a� compute the set of states �D�S� a�
 we know that
these sets of states will also be accessible�

For the example at hand� we know that fq�g is a state of the DFA D� We
nd that �D�fq�g� �� � fq�� q�g and �D�fq�g� �� � fq�g� Both these facts are
established by looking at the transition diagram of Fig� ��� and observing that
on � there are arcs out of q� to both q� and q�� while on � there is an arc only
to q�� We thus have one row of the transition table for the DFA� the second
row in Fig� �����

One of the two sets we computed is �old�
 fq�g has already been considered�
However� the other � fq�� q�g � is new and its transitions must be computed�
We nd �D�fq�� q�g� �� � fq�� q�g and �D�fq�� q�g� �� � fq�� q�g� For instance�
to see the latter calculation� we know that

�D�fq�� q�g� �� � �N �q�� �� � �N �q�� �� � fq�g � fq�g � fq�� q�g

We now have the fth row of Fig� ����� and we have discovered one new
state of D� which is fq�� q�g� A similar calculation tells us

�D�fq�� q�g� �� � �N �q�� �� � �N �q�� �� � fq�� q�g � � � fq�� q�g
�D�fq�� q�g� �� � �N �q�� �� � �N �q�� �� � fq�g � � � fq�g

These calculations give us the sixth row of Fig� ����� but it gives us only sets
of states that we have already seen�

Thus� the subset construction has converged
 we know all the accessible
states and their transitions� The entire DFA is shown in Fig� ����� Notice that
it has only three states� which is� by coincidence� exactly the same number of
states as the NFA of Fig� ���� from which it was constructed� However� the DFA
of Fig� ���� has six transitions� compared with the four transitions in Fig� ����
�

We need to show formally that the subset construction works� although
the intuition was suggested by the examples� After reading sequence of input

���� NONDETERMINISTIC FINITE AUTOMATA ��

Start

{ {q q {q0 0 0, ,q q1 2}}
0 1

1 0

0

1

}

Figure ����� The DFA constructed from the NFA of Fig ���

symbols w� the constructed DFA is in one state that is the set of NFA states
that the NFA would be in after reading w� Since the accepting states of the
DFA are those sets that include at least one accepting state of the NFA� and the
NFA also accepts if it gets into at least one of its accepting states� we may then
conclude that the DFA and NFA accept exactly the same strings� and therefore
accept the same language�

Theorem ���� � If D � �QD��� �D� fq�g� FD� is the DFA constructed from
NFA N � �QN ��� �N � q�� FN � by the subset construction� then L�D� � L�N��

PROOF� What we actually prove rst� by induction on jwj� is that

 �D�fq�g� w� � �N �q�� w�

Notice that each of the � functions returns a set of states from QN � but �D
interprets this set as one of the states of QD �which is the power set of QN ��

while �N interprets this set as a subset of QN �

BASIS� Let jwj � �
 that is� w � �� By the basis denitions of � for DFA�s and

NFA�s� both �D�fq�g� �� and �N �q�� �� are fq�g�

INDUCTION� Let w be of length n � �� and assume the statement for length
n� Break w up as w � xa� where a is the nal symbol of w� By the induc	
tive hypothesis� �D�fq�g� x� � �N �q�� x�� Let both these sets of N �s states be
fp�� p�� � � � � pkg�

The inductive part of the denition of � for NFA�s tells us

 �N �q�� w� �
k�
i��

�N �pi� a� �����

The subset construction� on the other hand� tells us that

�D�fp�� p�� � � � � pkg� a� �
k�
i��

�N �pi� a� �����

Now� let us use ����� and the fact that �D�fq�g� x� � fp�� p�� � � � � pkg in the

inductive part of the denition of � for DFA�s�

�� CHAPTER �� FINITE AUTOMATA

 �D�fq�g� w� � �D
�
 �D�fq�g� x�� a

�
� �D�fp�� p�� � � � � pkg� a� �

k�
i��

�N �pi� a�

�����

Thus� Equations ����� and ����� demonstrate that �D�fq�g� w� � �N�q�� w��

When we observe that D and N both accept w if and only if �D�fq�g� w� or
 �N �q�� w�� respectively� contain a state in FN � we have a complete proof that
L�D� � L�N�� �

Theorem ���� � A language L is accepted by some DFA if and only if L is
accepted by some NFA�

PROOF� �If� The �if� part is the subset construction and Theorem �����

�Only	if� This part is easy
 we have only to convert a DFA into an identical NFA�
Put intuitively� if we have the transition diagram for a DFA� we can also inter	
pret it as the transition diagram of an NFA� which happens to have exactly one
choice of transition in any situation� More formally� let D � �Q��� �D� q�� F �
be a DFA� Dene N � �Q��� �N � q�� F � to be the equivalent NFA� where �N is
dened by the rule�

� If �D�q� a� � p� then �N �q� a� � fpg�

It is then easy to show by induction on jwj� that if �D�q�� w� � p then

 �N�q�� w� � fpg

We leave the proof to the reader� As a consequence� w is accepted by D if and
only if it is accepted by N
 i�e�� L�D� � L�N�� �

����� A Bad Case for the Subset Construction

In Example ���� we found that the DFA had no more states than the NFA�
As we mentioned� it is quite common in practice for the DFA to have roughly
the same number of states as the NFA from which it is constructed� However�
exponential growth in the number of states is possible
 all the �n DFA states
that we could construct from an n	state NFA may turn out to be accessible� The
following example does not quite reach that bound� but it is an understandable
way to reach �n states in the smallest DFA that is equivalent to an n��	state
NFA�

Example ���� � Consider the NFA N of Fig� ����� L�N� is the set of all strings
of ��s and ��s such that the nth symbol from the end is �� Intuitively� a DFA
D that accepts this language must remember the last n symbols it has read�
Since any of �n subsets of the last n symbols could have been �� if D has fewer

���� NONDETERMINISTIC FINITE AUTOMATA ��

than �n states� then there would be some state q such that D can be in state q
after reading two di�erent sequences of n bits� say a�a� � � �an and b�b� � � � bn�

Since the sequences are di�erent� they must di�er in some position� say
ai �� bi� Suppose �by symmetry� that ai � � and bi � �� If i � �� then q
must be both an accepting state and a nonaccepting state� since a�a� � � �an is
accepted �the nth symbol from the end is �� and b�b� � � � bn is not� If i � ��
then consider the state p that D enters after reading i � � ��s� Then p must
be both accepting and nonaccepting� since aiai�� � � � an�� � � � � is accepted and
bibi�� � � � bn�� � � � � is not�

Start

0, 1

0, 1 0, 1 0, 1
q q qq0 1 2 n

1 0, 1

Figure ����� This NFA has no equivalent DFA with fewer than �n states

Now� let us see how the NFA N of Fig� ���� works� There is a state q� that
the NFA is always in� regardless of what inputs have been read� If the next
input is �� N may also �guess� that this � will be the nth symbol from the end�
so it goes to state q� as well as q�� From state q�� any input takes N to q��
the next input takes it to q�� and so on� until n � � inputs later� it is in the
accepting state qn� The formal statement of what the states of N do is�

�� N is in state q� after reading any sequence of inputs w�

�� N is in state qi� for i � �� �� � � � � n� after reading input sequence w if and
only if the ith symbol from the end of w is �
 that is� w is of the form
x�a�a� � � �ai��� where the aj �s are each input symbols�

We shall not prove these statements formally
 the proof is an easy induction
on jwj� mimicking Example ���� To complete the proof that the automaton
accepts exactly those strings with a � in the nth position from the end� we
consider statement ��� with i � n� That says N is in state qn if and only if
the nth symbol from the end is �� But qn is the only accepting state� so that
condition also characterizes exactly the set of strings accepted by N � �

���� Exercises for Section ���

� Exercise ����� � Convert to a DFA the following NFA�

� �

� p fp� qg fpg
q frg frg
r fsg �
s fsg fsg

�� CHAPTER �� FINITE AUTOMATA

The Pigeonhole Principle

In Example ���� we used an important reasoning technique called the
pigeonhole principle� Colloquially� if you have more pigeons than pigeon	
holes� and each pigeon �ies into some pigeonhole� then there must be at
least one hole that has more than one pigeon� In our example� the �pi	
geons� are the sequences of n bits� and the �pigeonholes� are the states�
Since there are fewer states than sequences� one state must be assigned
two sequences�

The pigeonhole principle may appear obvious� but it actually depends
on the number of pigeonholes being nite� Thus� it works for nite	state
automata� with the states as pigeonholes� but does not apply to other
kinds of automata that have an innite number of states�

To see why the niteness of the number of pigeonholes is essential�
consider the innite situation where the pigeonholes correspond to integers
�� �� � � � � Number the pigeons �� �� �� � � � � so there is one more pigeon than
there are pigeonholes� However� we can send pigeon i to hole i� � for all
i � �� Then each of the innite number of pigeons gets a pigeonhole� and
no two pigeons have to share a pigeonhole�

Exercise ����� � Convert to a DFA the following NFA�

� �

� p fq� sg fqg
q frg fq� rg
r fsg fpg
s � fpg

� Exercise ����� � Convert the following NFA to a DFA and informally describe
the language it accepts�

� �

� p fp� qg fpg
q fr� sg ftg
r fp� rg ftg
s � �
t � �

� Exercise ����� � Give nondeterministic nite automata to accept the following
languages� Try to take advantage of nondeterminism as much as possible�

���� NONDETERMINISTIC FINITE AUTOMATA ��

Dead States and DFA�s Missing Some Transitions

We have formally dened a DFA to have a transition from any state�
on any input symbol� to exactly one state� However� sometimes� it is
more convenient to design the DFA to �die� in situations where we know
it is impossible for any extension of the input sequence to be accepted�
For instance� observe the automaton of Fig� ���� which did its job by
recognizing a single keyword� then� and nothing else� Technically� this
automaton is not a DFA� because it lacks transitions on most symbols
from each of its states�

However� such an automaton is an NFA� If we use the subset construc	
tion to convert it to a DFA� the automaton looks almost the same� but it
includes a dead state� that is� a nonaccepting state that goes to itself on
every possible input symbol� The dead state corresponds to �� the empty
set of states of the automaton of Fig� ����

In general� we can add a dead state to any automaton that has no
more than one transition for any state and input symbol� Then� add a
transition to the dead state from each other state q� on all input symbols
for which q has no other transition� The result will be a DFA in the strict
sense� Thus� we shall sometimes refer to an automaton as a DFA if it has
at most one transition out of any state on any symbol� rather than if it
has exactly one transition�

� a� The set of strings over alphabet f�� �� � � � � �g such that the nal digit has
appeared before�

b� The set of strings over alphabet f�� �� � � � � �g such that the nal digit has
not appeared before�

c� The set of strings of ��s and ��s such that there are two ��s separated by
a number of positions that is a multiple of �� Note that � is an allowable
multiple of ��

Exercise ����� � In the only	if portion of Theorem ���� we omitted the proof
by induction on jwj that if �D�q�� w� � p then �N �q�� w� � fpg� Supply this
proof�

� Exercise ����
 � In the box on �Dead States and DFA�s Missing Some Tran	
sitions�� we claim that if N is an NFA that has at most one choice of state for
any state and input symbol �i�e�� ��q� a� never has size greater than ��� then the
DFA D constructed from N by the subset construction has exactly the states
and transitions of N plus transitions to a new dead state whenever N is missing
a transition for a given state and input symbol� Prove this contention�

�� CHAPTER �� FINITE AUTOMATA

Exercise ����� � In Example ���� we claimed that the NFA N is in state qi�
for i � �� �� � � � � n� after reading input sequence w if and only if the ith symbol
from the end of w is �� Prove this claim�

��� An Application
 Text Search

In this section� we shall see that the abstract study of the previous section�
where we considered the �problem� of deciding whether a sequence of bits ends
in ��� is actually an excellent model for several real problems that appear in
applications such as Web search and extraction of information from text�

����� Finding Strings in Text

A common problem in the age of the Web and other on	line text repositories
is the following� Given a set of words� nd all documents that contain one
�or all� of those words� A search engine is a popular example of this process�
The search engine uses a particular technology� called inverted indexes� where
for each word appearing on the Web �there are ����������� di�erent words��
a list of all the places where that word occurs is stored� Machines with very
large amounts of main memory keep the most common of these lists available�
allowing many people to search for documents at once�

Inverted	index techniques do not make use of nite automata� but they also
take very large amounts of time for crawlers to copy the Web and set up the
indexes� There are a number of related applications that are unsuited for in	
verted indexes� but are good applications for automaton	based techniques� The
characteristics that make an application suitable for searches that use automata
are�

�� The repository on which the search is conducted is rapidly changing� For
example�

�a� Every day� news analysts want to search the day�s on	line news arti	
cles for relevant topics� For example� a nancial analyst might search
for certain stock ticker symbols or names of companies�

�b� A �shopping robot� wants to search for the current prices charged
for the items that its clients request� The robot will retrieve current
catalog pages from the Web and then search those pages for words
that suggest a price for a particular item�

�� The documents to be searched cannot be cataloged� For example� Ama	
zon�com does not make it easy for crawlers to nd all the pages for all the
books that the company sells� Rather� these pages are generated �on the
�y� in response to queries� However� we could send a query for books on
a certain topic� say �nite automata�� and then search the pages retrieved
for certain words� e�g�� �excellent� in a review portion�

���� AN APPLICATION� TEXT SEARCH ��

����� Nondeterministic Finite Automata for Text Search

Suppose we are given a set of words� which we shall call the keywords� and we
want to nd occurrences of any of these words� In applications such as these� a
useful way to proceed is to design a nondeterministic nite automaton� which
signals� by entering an accepting state� that it has seen one of the keywords�
The text of a document is fed� one character at a time to this NFA� which then
recognizes occurrences of the keywords in this text� There is a simple form to
an NFA that recognizes a set of keywords�

�� There is a start state with a transition to itself on every input symbol�
e�g� every printable ASCII character if we are examining text� Intuitively�
the start state represents a �guess� that we have not yet begun to see one
of the keywords� even if we have seen some letters of one of these words�

�� For each keyword a�a� � � � ak� there are k states� say q�� q�� � � � � qk� There
is a transition from the start state to q� on symbol a�� a transition from
q� to q� on symbol a�� and so on� The state qk is an accepting state and
indicates that the keyword a�a� � � �ak has been found�

Example ���� � Suppose we want to design an NFA to recognize occurrences
of the words web and ebay� The transition diagram for the NFA designed using
the rules above is in Fig� ����� State � is the start state� and we use � to stand
for the set of all printable ASCII characters� States � through � have the job
of recognizing web� while states � through � recognize ebay� �

1

2 3 4

5 6 7 8
Start

Σ
w

e

e

yb a

b

Figure ����� An NFA that searches for the words web and ebay

Of course the NFA is not a program� We have two major choices for an
implementation of this NFA�

�� Write a program that simulates this NFA by computing the set of states
it is in after reading each input symbol� The simulation was suggested in
Fig� �����

�� Convert the NFA to an equivalent DFA using the subset construction�
Then simulate the DFA directly�

�� CHAPTER �� FINITE AUTOMATA

Some text	processing programs� such as advanced forms of the UNIX grep

command �egrep and fgrep� actually use a mixture of these two approaches�
However� for our purposes� conversion to a DFA is easy and is guaranteed not
to increase the number of states�

����� A DFA to Recognize a Set of Keywords

We can apply the subset construction to any NFA� However� when we apply that
construction to an NFA that was designed from a set of keywords� according to
the strategy of Section ������ we nd that the number of states of the DFA is
never greater than the number of states of the NFA� Since in the worst case the
number of states exponentiates as we go to the DFA� this observation is good
news and explains why the method of designing an NFA for keywords and then
constructing a DFA from it is used frequently� The rules for constructing the
set of DFA states is as follows�

a� If q� is the start state of the NFA� then fq�g is one of the states of the
DFA�

b� Suppose p is one of the NFA states� and it is reached from the start state
along a path whose symbols are a�a� � � � am� Then one of the DFA states
is the set of NFA states consisting of�

�� q��

�� p�

�� Every other state of the NFA that is reachable from q� by following
a path whose labels are a su�x of a�a� � � � am� that is� any sequence
of symbols of the form ajaj�� � � � am�

Note that in general� there will be one DFA state for each NFA state p� However�
in step �b�� two states may actually yield the same set of NFA states� and thus
become one state of the DFA� For example� if two of the keywords begin with
the same letter� say a� then the two NFA states that are reached from q� by an
arc labeled a will yield the same set of NFA states and thus get merged in the
DFA�

Example ���� � The construction of a DFA from the NFA of Fig� ���� is shown
in Fig� ����� Each of the states of the DFA is located in the same position as
the state p from which it is derived using rule �b� above� For example� consider
the state ���� which is our shorthand for f�� �� �g� This state was constructed
from state �� It includes the start state� �� because every set of the DFA states
does� It also includes state � because that state is reached from state � by a
su�x� e� of the string we that reaches state � in Fig� �����

The transitions for each of the DFA states may be calculated according to
the subset construction� However� the rule is simple� From any set of states that
includes the start state q� and some other states fp�� p�� � � � � png� determine� for

���� AN APPLICATION� TEXT SEARCH ��

Start

1

12

15 16 17 18

Σ −e−w
w

e

w

y

Σ
w

Σ

−e−w

Σ −b−e−w

w

ee

e

b

Σ

Σ

−e−w−y

−e−w

Σ−b−e−w

Σ −a−e−w

e

e w
w

135 146

a

−a−e−w

w

b

a

e

e

w

Figure ����� Conversion of the NFA from Fig� ���� to a DFA

each symbol x� where the pi�s go in the NFA� and let this DFA state have a
transition labeled x to the DFA state consisting of q� and all the targets of the
pi�s and q� on symbol x� On all symbols x such that there are no transitions
out of any of the pi�s on symbol x� let this DFA state have a transition on x to
that state of the DFA consisting of q� and all states that are reached from q�
in the NFA following an arc labeled x�

For instance� consider state ��� of Fig� ����� The NFA of Fig� ���� has
transitions on symbol b from states � and � to states � and �� respectively�
Therefore� on symbol b� ��� goes to ���� On symbol e� there are no transitions
of the NFA out of � or �� but there is a transition from � to �� Thus� in the
DFA� ��� goes to �� on input e� Similarly� on input w� ��� goes to ���

On every other symbol x� there are no transitions out of � or �� and state �
goes only to itself� Thus� there are transitions from ��� to � on every symbol
in � other than b� e� and w� We use the notation � � b � e � w to represent
this set� and use similar representations of other sets in which a few symbols
are removed from �� �

����� Exercises for Section ���

Exercise ����� � Design NFA�s to recognize the following sets of strings�

�� CHAPTER �� FINITE AUTOMATA

� a� abc� abd� and aacd� Assume the alphabet is fa� b� c� dg�

b� 	
	
�
	
� and 	

�

c� ab� bc� and ca� Assume the alphabet is fa� b� cg�

Exercise ����� � Convert each of your NFA�s from Exercise ����� to DFA�s�

��� Finite Automata With Epsilon�Transitions

We shall now introduce another extension of the nite automaton� The new
�feature� is that we allow a transition on �� the empty string� In e�ect� an
NFA is allowed to make a transition spontaneously� without receiving an input
symbol� Like the nondeterminism added in Section ���� this new capability does
not expand the class of languages that can be accepted by nite automata� but it
does give us some added �programming convenience�� We shall also see� when
we take up regular expressions in Section ���� how NFA�s with �	transitions�
which we call ��NFA�s� are closely related to regular expressions and useful
in proving the equivalence between the classes of languages accepted by nite
automata and by regular expressions�

��
�� Uses of ��Transitions

We shall begin with an informal treatment of �	NFA�s� using transition diagrams
with � allowed as a label� In the examples to follow� think of the automaton
as accepting those sequences of labels along paths from the start state to an
accepting state� However� each � along a path is �invisible�
 i�e�� it contributes
nothing to the string along the path�

Example ���
 � In Fig� ���� is an �	NFA that accepts decimal numbers con	
sisting of�

�� An optional � or � sign�

�� A string of digits�

�� A decimal point� and

�� Another string of digits� Either this string of digits� or the string ��� can
be empty� but at least one of the two strings of digits must be nonempty�

Of particular interest is the transition from q� to q� on any of �� �� or ��
Thus� state q� represents the situation in which we have seen the sign if there
is one� and perhaps some digits� but not the decimal point� State q� represents
the situation where we have just seen the decimal point� and may or may not
have seen prior digits� In q� we have denitely seen at least one digit� but
not the decimal point� Thus� the interpretation of q� is that we have seen a

���� FINITE AUTOMATA WITH EPSILON
TRANSITIONS ��

q q q q q

q

0 1 2 3 5

4

Start

0,1,...,9 0,1,...,9

ε ε

0,1,...,9

0,1,...,9

,+,−

.

.

Figure ����� An �	NFA accepting decimal numbers

decimal point and at least one digit� either before or after the decimal point�
We may stay in q� reading whatever digits there are� and also have the option
of �guessing� the string of digits is complete and going spontaneously to q�� the
accepting state� �

Example ���� � The strategy we outlined in Example ���� for building an
NFA that recognizes a set of keywords can be simplied further if we allow
�	transitions� For instance� the NFA recognizing the keywords web and ebay�
which we saw in Fig� ����� can also be implemented with �	transitions as in
Fig� ����� In general� we construct a complete sequence of states for each
keyword� as if it were the only word the automaton needed to recognize� Then�
we add a new start state �state � in Fig� ������ with �	transitions to the start	
states of the automata for each of the keywords� �

432

765

Σ

8

be

yab

w

e

1

0

9

Start

ε

ε

Figure ����� Using �	transitions to help recognize keywords

��
�� The Formal Notation for an ��NFA

We may represent an �	NFA exactly as we do an NFA� with one exception� the
transition function must include information about transitions on �� Formally�
we represent an �	NFA A by A � �Q��� �� q�� F �� where all components have
their same interpretation as for an NFA� except that � is now a function that
takes as arguments�

�� A state in Q� and

�� CHAPTER �� FINITE AUTOMATA

�� A member of � � f�g� that is� either an input symbol� or the symbol ��
We require that �� the symbol for the empty string� cannot be a member
of the alphabet �� so no confusion results�

Example ���� � The �	NFA of Fig� ���� is represented formally as

E � �fq�� q�� � � � � q�g� f������ �� �� � � � � �g� �� q�� fq�g�

where � is dened by the transition table in Fig� ����� �

� ��� � �� �� � � � � �

q� fq�g fq�g � �
q� � � fq�g fq�� q�g
q� � � � fq�g
q� fq�g � � fq�g
q� � � fq�g �
q� � � � �

Figure ����� Transition table for Fig� ����

��
�� Epsilon�Closures

We shall proceed to give formal denitions of an extended transition function for
�	NFA�s� which leads to the denition of acceptance of strings and languages by
these automata� and eventually lets us explain why �	NFA�s can be simulated by
DFA�s� However� we rst need to learn a central denition� called the ��closure
of a state� Informally� we �	close a state q by following all transitions out of
q that are labeled �� However� when we get to other states by following �� we
follow the �	transitions out of those states� and so on� eventually nding every
state that can be reached from q along any path whose arcs are all labeled ��
Formally� we dene the �	closure ECLOSE�q� recursively� as follows�

BASIS� State q is in ECLOSE�q��

INDUCTION� If state p is in ECLOSE�q�� and there is a transition from state p
to state r labeled �� then r is in ECLOSE�q�� More precisely� if � is the transition
function of the �	NFA involved� and p is in ECLOSE�q�� then ECLOSE�q� also
contains all the states in ��p� ���

Example ��� � For the automaton of Fig� ����� each state is its own �	closure�
with two exceptions� ECLOSE�q�� � fq�� q�g and ECLOSE�q�� � fq�� q�g� The
reason is that there are only two �	transitions� one that adds q� to ECLOSE�q��
and the other that adds q� to ECLOSE�q���

���� FINITE AUTOMATA WITH EPSILON
TRANSITIONS ��

1

2 3 6

4 5 7

ε

ε ε

ε

εa

b

Figure ����� Some states and transitions

A more complex example is given in Fig� ����� For this collection of states�
which may be part of some �	NFA� we can conclude that

ECLOSE��� � f�� �� �� �� �g

Each of these states can be reached from state � along a path exclusively labeled
�� For example� state � is reached by the path � � � � � � �� State � is not
in ECLOSE���� since although it is reachable from state �� the path must use
the arc � � � that is not labeled �� The fact that state � is also reached from
state � along a path �� �� �� � that has non	� transitions is unimportant�
The existence of one path with all labels � is su�cient to show state � is in
ECLOSE���� �

We sometimes need to apply the �	closure to a set of states S� We do so my
taking the union of the �	closures of the individual states
 that is� ECLOSE�S� �S
q in S ECLOSE�q��

��
�� Extended Transitions and Languages for ��NFA�s

The �	closure allows us to explain easily what the transitions of an �	NFA look
like when given a sequence of �non	�� inputs� From there� we can dene what
it means for an �	NFA to accept its input�

Suppose that E � �Q��� �� q�� F � is an �	NFA� We rst dene �� the extended
transition function� to re�ect what happens on a sequence of inputs� The intent
is that ��q� w� is the set of states that can be reached along a path whose labels�
when concatenated� form the string w� As always� ��s along this path do not
contribute to w� The appropriate recursive denition of � is�

BASIS� ��q� �� � ECLOSE�q�� That is� if the label of the path is �� then we can
follow only �	labeled arcs extending from state q
 that is exactly what ECLOSE

does�

INDUCTION� Suppose w is of the form xa� where a is the last symbol of w�
Note that a is a member of �
 it cannot be �� which is not in �� We compute
 ��q� w� as follows�

�� Let fp�� p�� � � � � pkg be ��q� x�� That is� the pi�s are all and only the states
that we can reach from q following a path labeled x� This path may end

�� CHAPTER �� FINITE AUTOMATA

with one or more transitions labeled �� and may have other �	transitions�
as well�

�� Let
Sk
i�� ��pi� a� be the set fr�� r�� � � � � rmg� That is� follow all transitions

labeled a from states we can reach from q along paths labeled x� The
rj �s are some of the states we can reach from q along paths labeled w�
The additional states we can reach are found from the rj �s by following
�	labeled arcs in step ���� below�

�� Then ��q� w� � ECLOSE�fr�� r�� � � � � rmg�� This additional closure step
includes all the paths from q labeled w� by considering the possibility
that there are additional �	labeled arcs that we can follow after making a
transition on the nal �real� symbol� a�

Example ���� � Let us compute ��q�� ���� for the �	NFA of Fig� ����� A
summary of the steps needed are as follows�

� ��q�� �� � ECLOSE�q�� � fq�� q�g�

� Compute ��q�� �� as follows�

�� First compute the transitions on input � from the states q� and q�
that we obtained in the calculation of ��q�� ��� above� That is� we
compute ��q�� �� � ��q�� �� � fq�� q�g�

�� Next� �	close the members of the set computed in step ���� We get
ECLOSE�q�� � ECLOSE�q�� � fq�g � fq�g � fq�� q�g� That set is
 ��q�� ��� This two	step pattern repeats for the next two symbols�

� Compute ��q�� ��� as follows�

�� First compute ��q�� �� � ��q�� �� � fq�g � fq�g � fq�� q�g�

�� Then compute

 ��q�� ��� � ECLOSE�q�� � ECLOSE�q�� � fq�g � fq�� q�g � fq�� q�� q�g

� Compute ��q�� ���� as follows�

�� First compute ��q�� �� � ��q�� �� � ��q�� �� � fq�g � fq�g � � �
fq�g�

�� Then compute ��q�� ���� � ECLOSE�q�� � fq�� q�g�

�

Now� we can dene the language of an �	NFA E � �Q��� �� q�� F � in the

expected way� L�E� � fw j ��q�� w� � F �� �g� That is� the language of E is
the set of strings w that take the start state to at least one accepting state� For
instance� we saw in Example ���� that ��q�� ���� contains the accepting state
q�� so the string ��� is in the language of that �	NFA�

���� FINITE AUTOMATA WITH EPSILON
TRANSITIONS ��

��
�
 Eliminating ��Transitions

Given any �	NFA E� we can nd a DFA D that accepts the same language as E�
The construction we use is very close to the subset construction� as the states of
D are subsets of the states of E� The only di�erence is that we must incorporate
�	transitions of E� which we do through the mechanism of the �	closure�

Let E � �QE ��� �E � q�� FE�� Then the equivalent DFA

D � �QD��� �D� qD� FD�

is dened as follows�

�� QD is the set of subsets of QE � More precisely� we shall nd that all
accessible states of D are ��closed subsets of QE� that is� sets S � QE

such that S � ECLOSE�S�� Put another way� the �	closed sets of states S
are those such that any �	transition out of one of the states in S leads to
a state that is also in S� Note that � is an �	closed set�

�� qD � ECLOSE�q��
 that is� we get the start state of D by closing the set
consisting of only the start state of E� Note that this rule di�ers from
the original subset construction� where the start state of the constructed
automaton was just the set containing the start state of the given NFA�

�� FD is those sets of states that contain at least one accepting state of E�
That is� FD � fS j S is in QD and S � FE �� �g�

�� �D�S� a� is computed� for all a in � and sets S in QD by�

�a� Let S � fp�� p�� � � � � pkg�

�b� Compute
Sk
i�� �E�pi� a�
 let this set be fr�� r�� � � � � rmg�

�c� Then �D�S� a� � ECLOSE�fr�� r�� � � � � rmg��

Example ���� � Let us eliminate �	transitions from the �	NFA of Fig� �����
which we shall call E in what follows� From E� we construct an DFA D� which
is shown in Fig� ����� However� to avoid clutter� we omitted from Fig� ���� the
dead state � and all transitions to the dead state� You should imagine that for
each state shown in Fig� ���� there are additional transitions from any state to
� on any input symbols for which a transition is not indicated� Also� the state
� has transitions to itself on all input symbols�

Since the start state of E is q�� the start state of D is ECLOSE�q��� which
is fq�� q�g� Our rst job is to nd the successors of q� and q� on the various
symbols in �
 note that these symbols are the plus and minus signs� the dot�
and the digits � through �� On � and �� q� goes nowhere in Fig� ����� while
q� goes to q�� Thus� to compute �D�fq�� q�g��� we start with fq�g and �	close
it� Since there are no �	transitions out of q�� we have �D�fq�� q�g��� � fq�g�
Similarly� �D�fq�� q�g��� � fq�g� These two transitions are shown by one arc
in Fig� �����

�� CHAPTER �� FINITE AUTOMATA

Start

{ { { {

{ {

q q q q

q q

0 1 1
, }q

1
} , q

4
} 2, q

3
, q5}

2}
3
, q5}

0,1,...,9 0,1,...,9

0,1,...,9

0,1,...,9

0,1,...,9

0,1,...,9

+,−

.

.

.

Figure ����� The DFA D that eliminates �	transitions from Fig� ����

Next� we need to compute �D�fq�� q�g� ��� Since q� goes nowhere on the
dot� and q� goes to q� in Fig� ����� we must �	close fq�g� As there are no
�	transitions out of q�� this state is its own closure� so �D�fq�� q�g� �� � fq�g�

Finally� we must compute �D�fq�� q�g� ��� as an example of the transitions
from fq�� q�g on all the digits� We nd that q� goes nowhere on the digits� but
q� goes to both q� and q�� Since neither of those states have �	transitions out�
we conclude �D�fq�� q�g� �� � fq�� q�g� and likewise for the other digits�

We have now explained the arcs out of fq�� q�g in Fig� ����� The other
transitions are computed similarly� and we leave them for you to check� Since
q� is the only accepting state of E� the accepting states of D are those accessible
states that contain q�� We see these two sets fq�� q�g and fq�� q�� q�g indicated
by double circles in Fig� ����� �

Theorem ���� � A language L is accepted by some �	NFA if and only if L is
accepted by some DFA�

PROOF� �If� This direction is easy� Suppose L � L�D� for some DFA� Turn
D into an �	NFA E by adding transitions ��q� �� � � for all states q of D�
Technically� we must also convert the transitions of D on input symbols� e�g��
�D�q� a� � p into an NFA	transition to the set containing only p� that is
�E�q� a� � fpg� Thus� the transitions of E and D are the same� but E ex	
plicitly states that there are no transitions out of any state on ��

�Only	if� Let E � �QE ��� �E � q�� FE� be an �	NFA� Apply the modied
subset construction described above to produce the DFA

D � �QD��� �D� qD� FD�

We need to show that L�D� � L�E�� and we do so by showing that the extended

transition functions of E and D are the same� Formally� we show �E�q�� w� �
 �D�qD � w� by induction on the length of w�

���� FINITE AUTOMATA WITH EPSILON
TRANSITIONS ��

BASIS� If jwj � �� then w � �� We know �E�q�� �� � ECLOSE�q��� We also
know that qD � ECLOSE�q��� because that is how the start state of D is dened�

Finally� for a DFA� we know that ��p� �� � p for any state p� so in particular�
 �D�qD � �� � ECLOSE�q��� We have thus proved that �E�q�� �� � �D�qD � ���

INDUCTION� Suppose w � xa� where a is the nal symbol of w� and assume
that the statement holds for x� That is� �E�q�� x� � �D�qD� x�� Let both these
sets of states be fp�� p�� � � � � pkg�

By the denition of � for �	NFA�s� we compute �E�q�� w� by�

�� Let fr�� r�� � � � � rmg be
Sk
i�� �E�pi� a��

�� Then �E�q�� w� � ECLOSE�fr�� r�� � � � � rmg��

If we examine the construction of DFA D in the modied subset construction
above� we see that �D�fp�� p�� � � � � pkg� a� is constructed by the same two steps

��� and ��� above� Thus� �D�qD � w�� which is �D�fp�� p�� � � � � pkg� a� is the same

set as �E�q�� w�� We have now proved that �E�q�� w� � �D�qD� w� and completed
the inductive part� �

��
�� Exercises for Section ��

� Exercise ����� � Consider the following �	NFA�

� a b c

� p � fpg fqg frg
q fpg fqg frg �
r fqg frg � fpg

a� Compute the �	closure of each state�

b� Give all the strings of length three or less accepted by the automaton�

c� Convert the automaton to a DFA�

Exercise ����� � Repeat Exercise ����� for the following �	NFA�

� a b c

� p fq� rg � fqg frg
q � fpg frg fp� qg
r � � � �

Exercise ����� � Design �	NFA�s for the following languages� Try to use �	
transitions to simplify your design�

a� The set of strings consisting of zero or more a�s followed by zero or more
b�s� followed by zero or more c�s�

�� CHAPTER �� FINITE AUTOMATA

� b� The set of strings that consist of either �� repeated one or more times or
��� repeated one or more times�

� c� The set of strings of ��s and ��s such that at least one of the last ten
positions is a ��

��� Summary of Chapter �

✦ Deterministic Finite Automata� A DFA has a nite set of states and a
nite set of input symbols� One state is designated the start state� and
zero or more states are accepting states� A transition function determines
how the state changes each time an input symbol is processed�

✦ Transition Diagrams � It is convenient to represent automata by a graph
in which the nodes are the states� and arcs are labeled by input symbols�
indicating the transitions of that automaton� The start state is designated
by an arrow� and the accepting states by double circles�

✦ Language of an Automaton� The automaton accepts strings� A string is
accepted if� starting in the start state� the transitions caused by processing
the symbols of that string one	at	a	time lead to an accepting state� In
terms of the transition diagram� a string is accepted if it is the label of a
path from the start state to some accepting state�

✦ Nondeterministic Finite Automata� The NFA di�ers from the DFA in
that the NFA can have any number of transitions �including zero� to next
states from a given state on a given input symbol�

✦ The Subset Construction� By treating sets of states of an NFA as states
of a DFA� it is possible to convert any NFA to a DFA that accepts the
same language�

✦ ��Transitions � We can extend the NFA by allowing transitions on an
empty input� i�e�� no input symbol at all� These extended NFA�s can be
converted to DFA�s accepting the same language�

✦ Text�Searching Applications � Nondeterministic nite automata are a use	
ful way to represent a pattern matcher that scans a large body of text for
one or more keywords� These automata are either simulated directly in
software or are rst converted to a DFA� which is then simulated�

��� Gradiance Problems for Chapter �

The following is a sample of problems that are available on	line through the
Gradiance system at www�gradiance�com�pearson� Each of these problems
is worked like conventional homework� The Gradiance system gives you four

��	� GRADIANCE PROBLEMS FOR CHAPTER � ��

choices that sample your knowledge of the solution� If you make the wrong
choice� you are given a hint or advice and encouraged to try the same problem
again�

Problem ��� � Examine the following DFA �shown on	line by the Gradiance
system�� Identify in the list below the string that this automaton accepts�

Problem ��� � The nite automaton below �shown on	line by the Gradiance
system� accepts no word of length zero� no word of length one� and only two
words of length two ��� and ���� There is a fairly simple recurrence equation for
the number N�k� of words of length k that this automaton accepts� Discover
this recurrence and demonstrate your understanding by identifying the correct
value of N�k� for some particular k� Note� the recurrence does not have an
easy	to	use closed form� so you will have to compute the rst few values by
hand� You do not have to compute N�k� for any k greater than ���

Problem ��� � Here is the transition function of a simple� deterministic au	
tomaton with start state A and accepting state B�

� �

A A B
B B A

We want to show that this automaton accepts exactly those strings with an odd
number of ��s� or more formally�

��A�w� � B if and only if w has an odd number of ��s�

Here� � is the extended transition function of the automaton
 that is� ��A�w�
is the state that the automaton is in after processing input string w The proof
of the statement above is an induction on the length of w� Below� we give the
proof with reasons missing� You must give a reason for each step� and then
demonstrate your understanding of the proof by classifying your reasons into
the following three categories�

A� Use of the inductive hypothesis�

B� Reasoning about properties of deterministic nite automata� e�g�� that if
string s � yz� then ��q� s� � ����q� y�� z��

C� Reasoning about properties of binary strings �strings of ��s and ��s�� e�g��
that every string is longer than any of its proper substrings�

Basis �jwj � ���

�� w � � because�

�� ��A� �� � A because�

�� CHAPTER �� FINITE AUTOMATA

�� � has an even number of ��s because�

Induction �jwj � n � ��

�� There are two cases� �a� when w � x� and �b� when w � x� because�

Case �a��

�� In case �a�� w has an odd number of ��s if and only if x has an even
number of ��s because�

�� In case �a�� ��A� x� � A if and only if w has an odd number of ��s because�

�� In case �a�� ��A�w� � B if and only if w has an odd number of ��s because�

Case �b��

�� In case �b�� w has an odd number of ��s if and only if x has an odd number
of �� because�

�� In case �b�� ��A� x� � B if and only if w has an odd number of ��s because�

��� In case �b�� ��A�w� � B if and only if w has an odd number of ��s because�

Problem ��� � Convert the following nondeterministic nite automaton �shown
on	line by the Gradiance system� to a DFA� including the dead state� if neces	
sary� Which of the following sets of NFA states is not a state of the DFA that
is accessible from the start state of the DFA�

Problem ��� � The following nondeterministic nite automaton �shown on	line
by the Gradiance system� accepts which of the following strings�

Problem ��
 � Here is a nondeterministic nite automaton with epsilon	trans	
itions �shown on	line by the Gradiance system�� Suppose we use the extended
subset construction from Section ����� to convert this epsilon	NFA to a deter	
ministic nite automaton with a dead state� with all transitions dened� and
with no state that is inaccessible from the start state� Which of the following
would be a transition of the DFA�

Problem ��� � Here is an epsilon	NFA �shown on	line by the Gradiance sys	
tem�� Suppose we construct an equivalent DFA by the construction of Section
������ That is� start with the epsilon	closure of the start state A� For each set of
states S we construct �which becomes one state of the DFA�� look at the tran	
sitions from this set of states on input symbol �� See where those transitions
lead� and take the union of the epsilon	closures of all the states reached on ��
This set of states becomes a state of the DFA� Do the same for the transitions
out of S on input �� When we have found all the sets of epsilon	NFA states
that are constructed in this way� we have the DFA and its transitions� Carry
out this construction of a DFA� and identify one of the states of this DFA �as
a subset of the epsilon	NFA�s states� from the list below�

���� REFERENCES FOR CHAPTER � ��

Problem ��� � Identify which automata �in a set of diagrams shown on	line
by the Gradiance system� dene the same language and provide the correct
counterexample if they don�t� Choose the correct statement from the list below�

Problem �� � Examine the following DFA �shown on	line by the Gradiance
system�� This DFA accepts a certain language L� In this problem we shall
consider certain other languages that are dened by their tails� that is� languages
of the form �� � �� w� for some particular string w of ��s and ��s� Call this
language L�w�� Depending on w� L�w� may be contained in L� disjoint from L�
or neither contained nor disjoint from L �i�e�� some strings of the form xw are
in L and others are not�� Your problem is to nd a way to classify w into one of
these three cases� Then� use your knowledge to classify the following languages�

�� L���������� i�e�� the language of regular expression �� � �� ��������

�� L�������� i�e�� the language of regular expression �� � �� ������

�� L��������� i�e�� the language of regular expression �� � �� �������

�� L����������� i�e�� the language of regular expression �� � �� ���������

Problem ���� � Here is a nondeterministic nite automaton �shown on	line by
the Gradiance system�� Convert this NFA to a DFA� using the �lazy� version of
the subset construction described in Section ������ so only the accessible states
are constructed� Which of the following sets of NFA states becomes a state of
the DFA�

Problem ���� � Here is a nondeterministic nite automaton �shown on	line by
the Gradiance system�� Some input strings lead to more than one state� Find�
in the list below� a string that leads from the start state A to three di�erent
states �possibly including A��

��	 References for Chapter �

The formal study of nite	state systems is generally regarded as originating
with ���� However� this work was based on a �neural nets� model of computing�
rather than the nite automaton we know today� The conventional DFA was
independently proposed� in several similar variations� by ���� ���� and ���� The
nondeterministic nite automaton and the subset construction are from ����

�� D� A� Hu�man� �The synthesis of sequential switching circuits�� J� Frank�
lin Inst� �����	� ������� pp� ���!��� and ���!����

�� W� S� McCulloch and W� Pitts� �A logical calculus of the ideas immanent
in nervious activity�� Bull� Math� Biophysics � ������� pp� ���!����

�� G� H� Mealy� �A method for synthesizing sequential circuits�� Bell System
Technical Journal ���� ������� pp� ����!�����

�� CHAPTER �� FINITE AUTOMATA

�� E� F� Moore� �Gedanken experiments on sequential machines�� in ����
pp� ���!����

�� M� O� Rabin and D� Scott� �Finite automata and their decision problems��
IBM J� Research and Development ��� ������� pp� ���!����

�� C� E� Shannon and J� McCarthy� Automata Studies� Princeton Univ�
Press� �����

	2. Finite Automata

