
Chapter �

Finite Automata

This chapter introduces the class of languages known as �regular languages��
These languages are exactly the ones that can be described by nite automata�
which we sampled brie�y in Section ������ After an extended example that will
provide motivation for the study to follow� we dene nite automata formally�

As was mentioned earlier� a nite automaton has a set of states� and its
�control� moves from state to state in response to external �inputs�� One of
the crucial distinctions among classes of nite automata is whether that con	
trol is �deterministic�� meaning that the automaton cannot be in more than
one state at any one time� or �nondeterministic�� meaning that it may be in
several states at once� We shall discover that adding nondeterminism does
not let us dene any language that cannot be dened by a deterministic nite
automaton� but there can be substantial e�ciency in describing an application
using a nondeterministic automaton� In e�ect� nondeterminism allows us to
�program� solutions to problems using a higher	level language� The nondeter	
ministic nite automaton is then �compiled�� by an algorithm we shall learn
in this chapter� into a deterministic automaton that can be �executed� on a
conventional computer�

We conclude the chapter with a study of an extended nondeterministic aut	
omaton that has the additional choice of making a transition from one state to
another spontaneously� i�e�� on the empty string as �input�� These automata
also accept nothing but the regular languages� However� we shall nd them
quite important in Chapter �� when we study regular expressions and their
equivalence to automata�

The study of the regular languages continues in Chapter �� There� we in	
troduce another important way to describe regular languages� the algebraic
notation known as regular expressions� After discussing regular expressions�
and showing their equivalence to nite automata� we use both automata and
regular expressions as tools in Chapter � to show certain important properties
of the regular languages� Examples of such properties are the �closure� proper	
ties� which allow us to claim that one language is regular because one or more
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other languages are known to be regular� and �decision� properties� The latter
are algorithms to answer questions about automata or regular expressions� e�g��
whether two automata or expressions represent the same language�

��� An Informal Picture of Finite Automata

In this section� we shall study an extended example of a real	world problem
whose solution uses nite automata in an important role� We investigate pro	
tocols that support �electronic money� � les that a customer can use to pay
for goods on the internet� and that the seller can receive with assurance that
the �money� is real� The seller must know that the le has not been forged�
nor has it been copied and sent to the seller� while the customer retains a copy
of the same le to spend again�

The nonforgeability of the le is something that must be assured by a bank
and by a cryptography policy� That is� a third player� the bank� must issue and
encrypt the �money� les� so that forgery is not a problem� However� the bank
has a second important job� it must keep a database of all the valid money
that it has issued� so that it can verify to a store that the le it has received
represents real money and can be credited to the store�s account� We shall not
address the cryptographic aspects of the problem� nor shall we worry about
how the bank can store and retrieve what could be billions of �electronic dollar
bills�� These problems are not likely to represent long	term impediments to the
concept of electronic money� and examples of its small	scale use have existed
since the late �����s�

However� in order to use electronic money� protocols need to be devised to
allow the manipulation of the money in a variety of ways that the users want�
Because monetary systems always invite fraud� we must verify whatever policy
we adopt regarding how money is used� That is� we need to prove the only
things that can happen are things we intend to happen � things that do not
allow an unscrupulous user to steal from others or to �manufacture� money�
In the balance of this section� we shall introduce a very simple example of a
�bad� electronic	money protocol� model it with nite automata� and show how
constructions on automata can be used to verify protocols �or� in this case� to
discover that the protocol has a bug��

����� The Ground Rules

There are three participants� the customer� the store� and the bank� We assume
for simplicity that there is only one �money� le in existence� The customer
may decide to transfer this money le to the store� which will then redeem the
le from the bank �i�e�� get the bank to issue a new money le belonging to the
store rather than the customer� and ship goods to the customer� In addition�
the customer has the option to cancel the le� That is� the customer may ask
the bank to place the money back in the customer�s account� making the money
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no longer spendable� Interaction among the three participants is thus limited
to ve events�

�� The customer may decide to pay� That is� the customer sends the money
to the store�

�� The customer may decide to cancel� The money is sent to the bank with
a message that the value of the money is to be added to the customer�s
bank account�

�� The store may ship goods to the customer�

�� The store may redeem the money� That is� the money is sent to the bank
with a request that its value be given to the store�

�� The bank may transfer the money by creating a new� suitably encrypted
money le and sending it to the store�

����� The Protocol

The three participants must design their behaviors carefully� or the wrong things
may happen� In our example� we make the reasonable assumption that the
customer cannot be relied upon to act responsibly� In particular� the customer
may try to copy the money le� use it to pay several times� or both pay and
cancel the money� thus getting the goods �for free��

The bank must behave responsibly� or it cannot be a bank� In particular� it
must make sure that two stores cannot both redeem the same money le� and
it must not allow money to be both canceled and redeemed� The store should
be careful as well� In particular� it should not ship goods until it is sure it has
been given valid money for the goods�

Protocols of this type can be represented as nite automata� Each state
represents a situation that one of the participants could be in� That is� the state
�remembers� that certain important events have happened and that others have
not yet happened� Transitions between states occur when one of the ve events
described above occur� We shall think of these events as �external� to the
automata representing the three participants� even though each participant is
responsible for initiating one or more of the events� It turns out that what is
important about the problem is what sequences of events can happen� not who
is allowed to initiate them�

Figure ��� represents the three participants by automata� In that diagram�
we show only the events that a�ect a participant� For example� the action pay
a�ects only the customer and store� The bank does not know that the money
has been sent by the customer to the store
 it discovers that fact only when the
store executes the action redeem�

Let us examine rst the automaton �c� for the bank� The start state is
state �
 it represents the situation where the bank has issued the money le in
question but has not been requested either to redeem it or to cancel it� If a



�� CHAPTER �� FINITE AUTOMATA

1 43

2

transferredeem

cancel

Start

a b

c

d f

e g

Start

(a) Store

(b) Customer (c) Bank

redeem transfer

ship ship

transferredeem

ship

pay

cancel

Start pay

Figure ���� Finite automata representing a customer� a store� and a bank

cancel request is sent to the bank by the customer� then the bank restores the
money to the customer�s account and enters state �� The latter state represents
the situation where the money has been cancelled� The bank� being responsible�
will not leave state � once it is entered� since the bank must not allow the same
money to be cancelled again or spent by the customer��

Alternatively� when in state � the bank may receive a redeem request from
the store� If so� it goes to state �� and shortly sends the store a transfer message�
with a new money le that now belongs to the store� After sending the transfer
message� the bank goes to state �� In that state� it will neither accept cancel or
redeem requests nor will it perform any other actions regarding this particular
money le�

Now� let us consider Fig� ����a�� the automaton representing the actions of
the store� While the bank always does the right thing� the store�s system has
some defects� Imagine that the shipping and nancial operations are done by
separate processes� so there is the opportunity for the ship action to be done
either before� after� or during the redemption of the electronic money� That
policy allows the store to get into a situation where it has already shipped the
goods and then nds out the money was bogus�

The store starts out in state a� When the customer orders the goods by

�You should remember that this entire discussion is about one single money �le� The bank
will in fact be running the same protocol with a large number of electronic pieces of money�
but the workings of the protocol are the same for each of them� so we can discuss the problem
as if there were only one piece of electronic money in existence�
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performing the pay action� the store enters state b� In this state� the store
begins both the shipping and redemption processes� If the goods are shipped
rst� then the store enters state c� where it must still redeem the money from
the bank and receive the transfer of an equivalent money le from the bank�
Alternatively� the store may send the redeem message rst� entering state d�
From state d� the store might next ship� entering state e� or it might next
receive the transfer of money from the bank� entering state f � From state f � we
expect that the store will eventually ship� putting the store in state g� where the
transaction is complete and nothing more will happen� In state e� the store is
waiting for the transfer from the bank� Unfortunately� the goods have already
been shipped� and if the transfer never occurs� the store is out of luck�

Last� observe the automaton for the customer� Fig� ����b�� This automaton
has only one state� re�ecting the fact that the customer �can do anything��
The customer can perform the pay and cancel actions any number of times� in
any order� and stays in the lone state after each action�

����� Enabling the Automata to Ignore Actions

While the three automata of Fig� ��� re�ect the behaviors of the three partici	
pants independently� there are certain transitions that are missing� For example�
the store is not a�ected by a cancel message� so if the cancel action is performed
by the customer� the store should remain in whatever state it is in� However� in
the formal denition of a nite automaton� which we shall study in Section ����
whenever an input X is received by an automaton� the automaton must follow
an arc labeled X from the state it is in to some new state� Thus� the automaton
for the store needs an additional arc from each state to itself� labeled cancel�
Then� whenever the cancel action is executed� the store automaton can make a
�transition� on that input� with the e�ect that it stays in the same state it was
in� Without these additional arcs� whenever the cancel action was executed the
store automaton would �die�
 that is� the automaton would be in no state at
all� and further actions by that automaton would be impossible�

Another potential problem is that one of the participants may� intentionally
or erroneously� send an unexpected message� and we do not want this action to
cause one of the automata to die� For instance� suppose the customer decided
to execute the pay action a second time� while the store was in state e� Since
that state has no arc out with label pay� the store�s automaton would die before
it could receive the transfer from the bank� In summary� we must add to the
automata of Fig� ��� loops on certain states� with labels for all those actions
that must be ignored when in that state
 the complete automata are shown
in Fig� ���� To save space� we combine the labels onto one arc� rather than
showing several arcs with the same heads and tails but di�erent labels� The
two kinds of actions that must be ignored are�

�� Actions that are irrelevant to the participant involved� As we saw� the
only irrelevant action for the store is cancel� so each of its seven states
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has a loop labeled cancel� For the bank� both pay and ship are irrelevant�
so we have put at each of the bank�s states an arc labeled pay� ship� For
the customer� ship� redeem and transfer are all irrelevant� so we add arcs
with these labels� In e�ect� it stays in its one state on any sequence of
inputs� so the customer automaton has no e�ect on the operation of the
overall system� Of course� the customer is still a participant� since it is
the customer who initiates the pay and cancel actions� However� as we
mentioned� the matter of who initiates actions has nothing to do with the
behavior of the automata�

�� Actions that must not be allowed to kill an automaton� As mentioned� we
must not allow the customer to kill the store�s automaton by executing pay
again� so we have added loops with label pay to all but state a �where the
pay action is expected and relevant�� We have also added loops with labels
cancel to states � and � of the bank� in order to prevent the customer from
killing the bank�s automaton by trying to cancel money that has already
been redeemed� The bank properly ignores such a request� Likewise�
states � and � have loops on redeem� The store should not try to redeem
the same money twice� but if it does� the bank properly ignores the second
request�
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����� The Entire System as an Automaton

While we now have models for how the three participants behave� we do not
yet have a representation for the interaction of the three participants� As men	
tioned� because the customer has no constraints on behavior� that automaton
has only one state� and any sequence of events lets it stay in that state
 i�e�� it is
not possible for the system as a whole to �die� because the customer automaton
has no response to an action� However� both the store and bank behave in a
complex way� and it is not immediately obvious in what combinations of states
these two automata can be�

The normal way to explore the interaction of automata such as these is to
construct the product automaton� That automaton�s states represent a pair of
states� one from the store and one from the bank� For instance� the state ��� d�
of the product automaton represents the situation where the bank is in state
�� and the store is in state d� Since the bank has four states and the store has
seven� the product automaton has �� � � �� states�

We show the product automaton in Fig� ���� For clarity� we have arranged
the �� states in an array� The row corresponds to the state of the bank and
the column to the state of the store� To save space� we have also abbreviated
the labels on the arcs� with P � S� C� R� and T standing for pay� ship� cancel�
redeem� and transfer� respectively�
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Figure ���� The product automaton for the store and bank

To construct the arcs of the product automaton� we need to run the bank
and store automata �in parallel�� Each of the two components of the product
automaton independently makes transitions on the various inputs� However� it
is important to notice that if an input action is received� and one of the two
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automata has no state to go to on that input� then the product automaton
�dies�
 it has no state to go to�

To make this rule for state transitions precise� suppose the product automa	
ton is in state �i� x�� That state corresponds to the situation where the bank
is in state i and the store in state x� Let Z be one of the input actions� We
look at the automaton for the bank� and see whether there is a transition out
of state i with label Z� Suppose there is� and it leads to state j �which might
be the same as i if the bank loops on input Z�� Then� we look at the store and
see if there is an arc labeled Z leading to some state y� If both j and y exist�
then the product automaton has an arc from state �i� x� to state �j� y�� labeled
Z� If either of states j or y do not exist �because the bank or store has no arc
out of i or x� respectively� for input Z�� then there is no arc out of �i� x� labeled
Z�

We can now see how the arcs of Fig� ��� were selected� For instance� on
input pay� the store goes from state a to b� but stays put if it is in any other
state besides a� The bank stays in whatever state it is in when the input is
pay� because that action is irrelevant to the bank� This observation explains
the four arcs labeled P at the left ends of the four rows in Fig� ���� and the
loops labeled P on other states�

For another example of how the arcs are selected� consider the input redeem�
If the bank receives a redeem message when in state �� it goes to state �� If in
states � or �� it stays there� while in state � the bank automaton dies
 i�e�� it has
nowhere to go� The store� on the other hand� can make transitions from state
b to d or from c to e when the redeem input is received� In Fig� ���� we see six
arcs labeled redeem� corresponding to the six combinations of three bank states
and two store states that have outward	bound arcs labeled R� For example� in
state ��� b�� the arc labeled R takes the automaton to state ��� d�� since redeem
takes the bank from state � to � and the store from b to d� As another example�
there is an arc labeled R from ��� c� to ��� e�� since redeem takes the bank from
state � back to state �� while it takes the store from state c to state e�

����
 Using the Product Automaton to Validate the
Protocol

Figure ��� tells us some interesting things� For instance� of the �� states� only
ten of them can be reached from the start state� which is ��� a� � the combi	
nation of the start states of the bank and store automata� Notice that states
like ��� e� and ��� d� are not accessible� that is� there is no path to them from
the start state� Inaccessible states need not be included in the automaton� and
we did so in this example just to be systematic�

However� the real purpose of analyzing a protocol such as this one using
automata is to ask and answer questions that mean �can the following type
of error occur�� In the example at hand� we might ask whether it is possible
that the store can ship goods and never get paid� That is� can the product
automaton get into a state in which the store has shipped �that is� the state is
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in column c� e� or g�� and yet no transition on input T was ever made or will
be made�

For instance� in state ��� e�� the goods have shipped� but there will eventu	
ally be a transition on input T to state ��� g�� In terms of what the bank is
doing� once it has gotten to state �� it has received the redeem request and pro	
cessed it� That means it must have been in state � before receiving the redeem
and therefore the cancel message had not been received and will be ignored if
received in the future� Thus� the bank will eventually perform the transfer of
money to the store�

However� state ��� c� is a problem� The state is accessible� but the only arc
out leads back to that state� This state corresponds to a situation where the
bank received a cancel message before a redeem message� However� the store
received a pay message
 i�e�� the customer was being duplicitous and has both
spent and canceled the same money� The store foolishly shipped before trying
to redeem the money� and when the store does execute the redeem action� the
bank will not even acknowledge the message� because it is in state �� where it
has canceled the money and will not process a redeem request�

��� Deterministic Finite Automata

Now it is time to present the formal notion of a nite automaton� so that we
may start to make precise some of the informal arguments and descriptions that
we saw in Sections ����� and ���� We begin by introducing the formalism of a
deterministic nite automaton� one that is in a single state after reading any
sequence of inputs� The term �deterministic� refers to the fact that on each
input there is one and only one state to which the automaton can transition from
its current state� In contrast� �nondeterministic� nite automata� the subject of
Section ���� can be in several states at once� The term �nite automaton� will
refer to the deterministic variety� although we shall use �deterministic� or the
abbreviation DFA normally� to remind the reader of which kind of automaton
we are talking about�

����� De�nition of a Deterministic Finite Automaton

A deterministic �nite automaton consists of�

�� A nite set of states� often denoted Q�

�� A nite set of input symbols� often denoted ��

�� A transition function that takes as arguments a state and an input symbol
and returns a state� The transition function will commonly be denoted ��
In our informal graph representation of automata� � was represented by
arcs between states and the labels on the arcs� If q is a state� and a is an
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input symbol� then ��q� a� is that state p such that there is an arc labeled
a from q to p��

�� A start state� one of the states in Q�

�� A set of �nal or accepting states F � The set F is a subset of Q�

A deterministic nite automaton will often be referred to by its acronym� DFA�
The most succinct representation of a DFA is a listing of the ve components
above� In proofs we often talk about a DFA in �ve	tuple� notation�

A � �Q��� �� q�� F �

where A is the name of the DFA� Q is its set of states� � its input symbols� �
its transition function� q� its start state� and F its set of accepting states�

����� How a DFA Processes Strings

The rst thing we need to understand about a DFA is how the DFA decides
whether or not to �accept� a sequence of input symbols� The �language� of
the DFA is the set of all strings that the DFA accepts� Suppose a�a� � � � an is a
sequence of input symbols� We start out with the DFA in its start state� q�� We
consult the transition function �� say ��q�� a�� � q� to nd the state that the
DFA A enters after processing the rst input symbol a�� We process the next
input symbol� a�� by evaluating ��q�� a��
 let us suppose this state is q�� We
continue in this manner� nding states q�� q�� � � � � qn such that ��qi��� ai� � qi
for each i� If qn is a member of F � then the input a�a� � � � an is accepted� and
if not then it is �rejected��

Example ��� � Let us formally specify a DFA that accepts all and only the
strings of ��s and ��s that have the sequence �� somewhere in the string� We
can write this language L as�

fw j w is of the form x��y for some strings
x and y consisting of ��s and ��s onlyg

Another equivalent description� using parameters x and y to the left of the
vertical bar� is�

fx��y j x and y are any strings of ��s and ��sg

Examples of strings in the language include ��� ������ and ������� Examples
of strings not in the language include �� �� and �������

What do we know about an automaton that can accept this language L�
First� its input alphabet is � � f�� �g� It has some set of states� Q� of which
one� say q�� is the start state� This automaton has to remember the important
facts about what inputs it has seen so far� To decide whether �� is a substring
of the input� A needs to remember�

�More accurately� the graph is a picture of some transition function �� and the arcs of the
graph are constructed to re�ect the transitions speci�ed by ��
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�� Has it already seen ��� If so� then it accepts every sequence of further
inputs
 i�e�� it will only be in accepting states from now on�

�� Has it never seen ��� but its most recent input was �� so if it now sees a
�� it will have seen �� and can accept everything it sees from here on�

�� Has it never seen ��� but its last input was either nonexistent �it just
started� or it last saw a �� In this case� A cannot accept until it rst sees
a � and then sees a � immediately after�

These three conditions can each be represented by a state� Condition ��� is
represented by the start state� q�� Surely� when just starting� we need to see
a � and then a �� But if in state q� we next see a �� then we are no closer to
seeing ��� and so we must stay in state q�� That is� ��q�� �� � q��

However� if we are in state q� and we next see a �� we are in condition ����
That is� we have never seen ��� but we have our �� Thus� let us use q� to
represent condition ���� Our transition from q� on input � is ��q�� �� � q��

Now� let us consider the transitions from state q�� If we see a �� we are no
better o� than we were� but no worse either� We have not seen ��� but � was
the last symbol� so we are still waiting for a �� State q� describes this situation
perfectly� so we want ��q�� �� � q�� If we are in state q� and we see a � input�
we now know there is a � followed by a �� We can go to an accepting state�
which we shall call q�� and which corresponds to condition ��� above� That is�
��q�� �� � q��

Finally� we must design the transitions for state q�� In this state� we have
already seen a �� sequence� so regardless of what happens� we shall still be in
a situation where we�ve seen ��� That is� ��q�� �� � ��q�� �� � q��

Thus� Q � fq�� q�� q�g� As we said� q� is the start state� and the only
accepting state is q�
 that is� F � fq�g� The complete specication of the
automaton A that accepts the language L of strings that have a �� substring�
is

A � �fq�� q�� q�g� f�� �g� �� q�� fq�g�

where � is the transition function described above� �

����� Simpler Notations for DFA�s

Specifying a DFA as a ve	tuple with a detailed description of the � transition
function is both tedious and hard to read� There are two preferred notations
for describing automata�

�� A transition diagram� which is a graph such as the ones we saw in Sec	
tion ����

�� A transition table� which is a tabular listing of the � function� which by
implication tells us the set of states and the input alphabet�
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Transition Diagrams

A transition diagram for a DFA A � �Q��� �� q�� F � is a graph dened as follows�

a� For each state in Q there is a node�

b� For each state q in Q and each input symbol a in �� let ��q� a� � p�
Then the transition diagram has an arc from node q to node p� labeled
a� If there are several input symbols that cause transitions from q to p�
then the transition diagram can have one arc� labeled by the list of these
symbols�

c� There is an arrow into the start state q�� labeled Start� This arrow does
not originate at any node�

d� Nodes corresponding to accepting states �those in F � are marked by a
double circle� States not in F have a single circle�

Example ��� � Figure ��� shows the transition diagram for the DFA that we
designed in Example ���� We see in that diagram the three nodes that cor	
respond to the three states� There is a Start arrow entering the start state�
q�� and the one accepting state� q�� is represented by a double circle� Out of
each state is one arc labeled � and one arc labeled � �although the two arcs
are combined into one with a double label in the case of q��� The arcs each
correspond to one of the � facts developed in Example ���� �

1 0

0 1q0 q2 q1 0, 1
Start

Figure ���� The transition diagram for the DFA accepting all strings with a
substring ��

Transition Tables

A transition table is a conventional� tabular representation of a function like �
that takes two arguments and returns a value� The rows of the table correspond
to the states� and the columns correspond to the inputs� The entry for the row
corresponding to state q and the column corresponding to input a is the state
��q� a��

Example ��� � The transition table corresponding to the function � of Ex	
ample ��� is shown in Fig� ���� We have also shown two other features of a
transition table� The start state is marked with an arrow� and the accepting
states are marked with a star� Since we can deduce the sets of states and in	
put symbols by looking at the row and column heads� we can now read from
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the transition table all the information we need to specify the nite automaton
uniquely� �

� �

� q� q� q�
q� q� q�
q� q� q�

Figure ���� Transition table for the DFA of Example ���

����� Extending the Transition Function to Strings

We have explained informally that the DFA denes a language� the set of all
strings that result in a sequence of state transitions from the start state to an
accepting state� In terms of the transition diagram� the language of a DFA
is the set of labels along all the paths that lead from the start state to any
accepting state�

Now� we need to make the notion of the language of a DFA precise� To do
so� we dene an extended transition function that describes what happens when
we start in any state and follow any sequence of inputs� If � is our transition
function� then the extended transition function constructed from � will be called
 �� The extended transition function is a function that takes a state q and a
string w and returns a state p � the state that the automaton reaches when
starting in state q and processing the sequence of inputs w� We dene  � by
induction on the length of the input string� as follows�

BASIS�  ��q� �� � q� That is� if we are in state q and read no inputs� then we
are still in state q�

INDUCTION� Suppose w is a string of the form xa
 that is� a is the last symbol
of w� and x is the string consisting of all but the last symbol�� For example�
w � ���� is broken into x � ��� and a � �� Then

 ��q� w� � �
�
 ��q� x�� a

�
�����

Now ����� may seem like a lot to take in� but the idea is simple� To compute
 ��q� w�� rst compute  ��q� x�� the state that the automaton is in after processing

all but the last symbol of w� Suppose this state is p
 that is�  ��q� x� � p� Then
 ��q� w� is what we get by making a transition from state p on input a� the last

symbol of w� That is�  ��q� w� � ��p� a��

�Recall our convention that letters at the beginning of the alphabet are symbols� and those
near the end of the alphabet are strings� We need that convention to make sense of the phrase
�of the form xa��
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Example ��� � Let us design a DFA to accept the language

L � fw j w has both an even number of ��s and an even number of ��sg

It should not be surprising that the job of the states of this DFA is to count
both the number of ��s and the number of ��s� but count them modulo �� That
is� the state is used to remember whether the number of ��s seen so far is even or
odd� and also to remember whether the number of ��s seen so far is even or odd�
There are thus four states� which can be given the following interpretations�

q�� Both the number of ��s seen so far and the number of ��s seen so far are
even�

q�� The number of ��s seen so far is even� but the number of ��s seen so far is
odd�

q�� The number of ��s seen so far is even� but the number of ��s seen so far is
odd�

q�� Both the number of ��s seen so far and the number of ��s seen so far are
odd�

State q� is both the start state and the lone accepting state� It is the start
state� because before reading any inputs� the numbers of ��s and ��s seen so
far are both zero� and zero is even� It is the only accepting state� because it
describes exactly the condition for a sequence of ��s and ��s to be in language
L�

q q

q q

0 1

2 3

Start

0

0

1

1

0

0

1

1

Figure ���� Transition diagram for the DFA of Example ���

We now know almost how to specify the DFA for language L� It is

A � �fq�� q�� q�� q�g� f�� �g� �� q�� fq�g�

where the transition function � is described by the transition diagram of Fig� ����
Notice how each input � causes the state to cross the horizontal� dashed line�
Thus� after seeing an even number of ��s we are always above the line� in state
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q� or q� while after seeing an odd number of ��s we are always below the line�
in state q� or q�� Likewise� every � causes the state to cross the vertical� dashed
line� Thus� after seeing an even number of ��s� we are always to the left� in state
q� or q�� while after seeing an odd number of ��s we are to the right� in state q�
or q�� These observations are an informal proof that the four states have the
interpretations attributed to them� However� one could prove the correctness
of our claims about the states formally� by a mutual induction in the spirit of
Example �����

We can also represent this DFA by a transition table� Figure ��� shows this
table� However� we are not just concerned with the design of this DFA
 we
want to use it to illustrate the construction of  � from its transition function ��
Suppose the input is ������� Since this string has even numbers of ��s and ��s
both� we expect it is in the language� Thus� we expect that  ��q�� ������� � q��
since q� is the only accepting state� Let us now verify that claim�

� �

 � q� q� q�
q� q� q�
q� q� q�
q� q� q�

Figure ���� Transition table for the DFA of Example ���

The check involves computing  ��q�� w� for each prex w of ������� starting
at � and going in increasing size� The summary of this calculation is�

�  ��q�� �� � q��

�  ��q�� �� � �
�
 ��q�� ��� �

�
� ��q�� �� � q��

�  ��q�� ��� � �
�
 ��q�� ��� �

�
� ��q�� �� � q��

�  ��q�� ���� � �
�
 ��q�� ���� �

�
� ��q�� �� � q��

�  ��q�� ����� � �
�
 ��q�� ����� �

�
� ��q�� �� � q��

�  ��q�� ������ � �
�
 ��q�� ������ �

�
� ��q�� �� � q��

�  ��q�� ������� � �
�
 ��q�� ������� �

�
� ��q�� �� � q��

�
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Standard Notation and Local Variables

After reading this section� you might imagine that our customary notation
is required
 that is� you must use � for the transition function� use A for
the name of a DFA� and so on� We tend to use the same variables to
denote the same thing across all examples� because it helps to remind you
of the types of variables� much the way a variable i in a program is almost
always of integer type� However� we are free to call the components of an
automaton� or anything else� anything we wish� Thus� you are free to call
a DFA M and its transition function T if you like�

Moreover� you should not be surprised that the same variable means
di�erent things in di�erent contexts� For example� the DFA�s of Examples
��� and ��� both were given a transition function called �� However� the
two transition functions are each local variables� belonging only to their
examples� These two transition functions are very di�erent and bear no
relationship to one another�

����
 The Language of a DFA

Now� we can dene the language of a DFA A � �Q��� �� q�� F �� This language
is denoted L�A�� and is dened by

L�A� � fw j  ��q�� w� is in Fg

That is� the language of A is the set of strings w that take the start state q� to
one of the accepting states� If L is L�A� for some DFA A� then we say L is a
regular language�

Example ��� � As we mentioned earlier� if A is the DFA of Example ���� then
L�A� is the set of all strings of ��s and ��s that contain a substring ��� If A is
instead the DFA of Example ���� then L�A� is the set of all strings of ��s and
��s whose numbers of ��s and ��s are both even� �

����� Exercises for Section ���

Exercise ����� � In Fig� ��� is a marble	rolling toy� A marble is dropped at
A or B� Levers x�� x�� and x� cause the marble to fall either to the left or to
the right� Whenever a marble encounters a lever� it causes the lever to reverse
after the marble passes� so the next marble will take the opposite branch�

� a� Model this toy by a nite automaton� Let the inputs A and B represent
the input into which the marble is dropped� Let acceptance correspond
to the marble exiting at D
 nonacceptance represents a marble exiting at
C�
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A B

C D

x

xx
3

2

1

Figure ���� A marble	rolling toy

� b� Informally describe the language of the automaton�

c� Suppose that instead the levers switched before allowing the marble to
pass� How would your answers to parts �a� and �b� change�

�� Exercise ����� � We dened  � by breaking the input string into any string
followed by a single symbol �in the inductive part� Equation ����� However� we

informally think of  � as describing what happens along a path with a certain
string of labels� and if so� then it should not matter how we break the input
string in the denition of  �� Show that in fact�  ��q� xy� �  �

�
 ��q� x�� y

�
for any

state q and strings x and y� Hint � Perform an induction on jyj�

� Exercise ����� � Show that for any state q� string x� and input symbol a�
 ��q� ax� �  �

�
��q� a�� x

�
� Hint � Use Exercise ������

Exercise ����� � Give DFA�s accepting the following languages over the alpha	
bet f�� �g�

� a� The set of all strings ending in ���

b� The set of all strings with three consecutive ��s �not necessarily at the
end��

c� The set of strings with ��� as a substring�

� Exercise ����� � Give DFA�s accepting the following languages over the alpha	
bet f�� �g�

a� The set of all strings such that each block of ve consecutive symbols
contains at least two ��s�
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b� The set of all strings whose tenth symbol from the right end is a ��

c� The set of strings that either begin or end �or both� with ���

d� The set of strings such that the number of ��s is divisible by ve� and the
number of ��s is divisible by ��

�� Exercise ����
 � Give DFA�s accepting the following languages over the alpha	
bet f�� �g�

� a� The set of all strings beginning with a � that� when interpreted as a binary
integer� is a multiple of �� For example� strings ���� ����� and ���� are
in the language
 �� ���� and ��� are not�

b� The set of all strings that� when interpreted in reverse as a binary inte	
ger� is divisible by �� Examples of strings in the language are �� ������
�������� and �����

Exercise ����� � Let A be a DFA and q a particular state of A� such that
��q� a� � q for all input symbols a� Show by induction on the length of the

input that for all input strings w�  ��q� w� � q�

Exercise ����� � Let A be a DFA and a a particular input symbol of A� such
that for all states q of A we have ��q� a� � q�

a� Show by induction on n that for all n � ��  ��q� an� � q� where an is the
string consisting of n a�s�

b� Show that either fag� � L�A� or fag� � L�A� � ��

�� Exercise ���� � Let A � �Q��� �� q�� fqfg� be a DFA� and suppose that for all
a in � we have ��q�� a� � ��qf � a��

a� Show that for all w �� � we have  ��q�� w� �  ��qf � w��

b� Show that if x is a nonempty string in L�A�� then for all k � �� xk �i�e��
x written k times� is also in L�A��

�� Exercise ������ � Consider the DFA with the following transition table�

� �

� A A B
B B A

Informally describe the language accepted by this DFA� and prove by induction
on the length of an input string that your description is correct� Hint � When
setting up the inductive hypothesis� it is wise to make a statement about what
inputs get you to each state� not just what inputs get you to the accepting
state�
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� Exercise ������ � Repeat Exercise ������ for the following transition table�

� �

� A B A
B C A
C C C

��� Nondeterministic Finite Automata

A �nondeterministic� nite automaton �NFA� has the power to be in several
states at once� This ability is often expressed as an ability to �guess� something
about its input� For instance� when the automaton is used to search for certain
sequences of characters �e�g�� keywords� in a long text string� it is helpful to
�guess� that we are at the beginning of one of those strings and use a sequence of
states to do nothing but check that the string appears� character by character�
We shall see an example of this type of application in Section ����

Before examining applications� we need to dene nondeterministic nite
automata and show that each one accepts a language that is also accepted by
some DFA� That is� the NFA�s accept exactly the regular languages� just as
DFA�s do� However� there are reasons to think about NFA�s� They are often
more succinct and easier to design than DFA�s� Moreover� while we can always
convert an NFA to a DFA� the latter may have exponentially more states than
the NFA
 fortunately� cases of this type are rare�

����� An Informal View of Nondeterministic Finite
Automata

Like the DFA� an NFA has a nite set of states� a nite set of input symbols�
one start state and a set of accepting states� It also has a transition function�
which we shall commonly call �� The di�erence between the DFA and the NFA
is in the type of �� For the NFA� � is a function that takes a state and input
symbol as arguments �like the DFA�s transition function�� but returns a set
of zero� one� or more states �rather than returning exactly one state� as the
DFA must�� We shall start with an example of an NFA� and then make the
denitions precise�

Example ��
 � Figure ��� shows a nondeterministic nite automaton� whose
job is to accept all and only the strings of ��s and ��s that end in ��� State
q� is the start state� and we can think of the automaton as being in state q�
�perhaps among other states� whenever it has not yet �guessed� that the nal
�� has begun� It is always possible that the next symbol does not begin the
nal ��� even if that symbol is �� Thus� state q� may transition to itself on both
� and ��

However� if the next symbol is �� this NFA also guesses that the nal �� has
begun� An arc labeled � thus leads from q� to state q�� Notice that there are
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Start 0 1q0 q q

0, 1

1 2

Figure ���� An NFA accepting all strings that end in ��

two arcs labeled � out of q�� The NFA has the option of going either to q� or
to q�� and in fact it does both� as we shall see when we make the denitions
precise� In state q�� the NFA checks that the next symbol is �� and if so� it goes
to state q� and accepts�

Notice that there is no arc out of q� labeled �� and there are no arcs at all
out of q�� In these situations� the thread of the NFA�s existence corresponding
to those states simply �dies�� although other threads may continue to exist�
While a DFA has exactly one arc out of each state for each input symbol� an
NFA has no such constraint
 we have seen in Fig� ��� cases where the number
of arcs is zero� one� and two� for example�

q0

q2

q0 q0 q0 q0 q0

q1q1 q1

q2

0 0 1 0 1

(stuck)

(stuck)

Figure ����� The states an NFA is in during the processing of input sequence
�����

Figure ���� suggests how an NFA processes inputs� We have shown what
happens when the automaton of Fig� ��� receives the input sequence ������ It
starts in only its start state� q�� When the rst � is read� the NFA may go to
either state q� or state q�� so it does both� These two threads are suggested by
the second column in Fig� �����

Then� the second � is read� State q� may again go to both q� and q��
However� state q� has no transition on �� so it �dies�� When the third input� a
�� occurs� we must consider transitions from both q� and q�� We nd that q�
goes only to q� on �� while q� goes only to q�� Thus� after reading ���� the NFA
is in states q� and q�� Since q� is an accepting state� the NFA accepts ����

However� the input is not nished� The fourth input� a �� causes q��s thread
to die� while q� goes to both q� and q�� The last input� a �� sends q� to q� and
q� to q�� Since we are again in an accepting state� ����� is accepted� �
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����� De�nition of Nondeterministic Finite Automata

Now� let us introduce the formal notions associated with nondeterministic nite
automata� The di�erences between DFA�s and NFA�s will be pointed out as we
do� An NFA is represented essentially like a DFA�

A � �Q��� �� q�� F �

where�

�� Q is a nite set of states�

�� � is a nite set of input symbols�

�� q�� a member of Q� is the start state�

�� F � a subset of Q� is the set of �nal �or accepting� states�

�� �� the transition function is a function that takes a state in Q and an
input symbol in � as arguments and returns a subset of Q� Notice that
the only di�erence between an NFA and a DFA is in the type of value
that � returns� a set of states in the case of an NFA and a single state in
the case of a DFA�

Example ��� � The NFA of Fig� ��� can be specied formally as

�fq�� q�� q�g� f�� �g� �� q�� fq�g�

where the transition function � is given by the transition table of Fig� ����� �

� �

� q� fq�� q�g fq�g
q� � fq�g
q� � �

Figure ����� Transition table for an NFA that accepts all strings ending in ��

Notice that transition tables can be used to specify the transition function
for an NFA as well as for a DFA� The only di�erence is that each entry in the
table for the NFA is a set� even if the set is a singleton �has one member�� Also
notice that when there is no transition at all from a given state on a given input
symbol� the proper entry is �� the empty set�
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����� The Extended Transition Function

As for DFA�s� we need to extend the transition function � of an NFA to a
function  � that takes a state q and a string of input symbols w� and returns the
set of states that the NFA is in if it starts in state q and processes the string w�
The idea was suggested by Fig� ����
 in essence  ��q� w� is the column of states
found after reading w� if q is the lone state in the rst column� For instance�
Fig� ���� suggests that  ��q�� ���� � fq�� q�g� Formally� we dene  � for an NFA�s
transition function � by�

BASIS�  ��q� �� � fqg� That is� without reading any input symbols� we are only
in the state we began in�

INDUCTION� Suppose w is of the form w � xa� where a is the nal symbol of
w and x is the rest of w� Also suppose that  ��q� x� � fp�� p�� � � � � pkg� Let

k�
i��

��pi� a� � fr�� r�� � � � � rmg

Then  ��q� w� � fr�� r�� � � � � rmg� Less formally� we compute  ��q� w� by rst

computing  ��q� x�� and by then following any transition from any of these states
that is labeled a�

Example ��� � Let us use  � to describe the processing of input ����� by the
NFA of Fig� ���� A summary of the steps is�

��  ��q�� �� � fq�g�

��  ��q�� �� � ��q�� �� � fq�� q�g�

��  ��q�� ��� � ��q�� �� � ��q�� �� � fq�� q�g � � � fq�� q�g�

��  ��q�� ���� � ��q�� �� � ��q�� �� � fq�g � fq�g � fq�� q�g�

��  ��q�� ����� � ��q�� �� � ��q�� �� � fq�� q�g � � � fq�� q�g�

��  ��q�� ������ � ��q�� �� � ��q�� �� � fq�g � fq�g � fq�� q�g�

Line ��� is the basis rule� We obtain line ��� by applying � to the lone state� q��
that is in the previous set� and get fq�� q�g as a result� Line ��� is obtained by
taking the union over the two states in the previous set of what we get when we
apply � to them with input �� That is� ��q�� �� � fq�� q�g� while ��q�� �� � ��
For line ���� we take the union of ��q�� �� � fq�g and ��q�� �� � fq�g� Lines ���
and ��� are similar to lines ��� and ���� �
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����� The Language of an NFA

As we have suggested� an NFA accepts a string w if it is possible to make any
sequence of choices of next state� while reading the characters of w� and go from
the start state to any accepting state� The fact that other choices using the
input symbols of w lead to a nonaccepting state� or do not lead to any state at
all �i�e�� the sequence of states �dies��� does not prevent w from being accepted
by the NFA as a whole� Formally� if A � �Q��� �� q�� F � is an NFA� then

L�A� � fw j  ��q�� w� � F �� �g

That is� L�A� is the set of strings w in �� such that  ��q�� w� contains at least
one accepting state�

Example �� � As an example� let us prove formally that the NFA of Fig� ���
accepts the language L � fw j w ends in ��g� The proof is a mutual induction
of the following three statements that characterize the three states�

��  ��q�� w� contains q� for every w�

��  ��q�� w� contains q� if and only if w ends in ��

��  ��q�� w� contains q� if and only if w ends in ���

To prove these statements� we need to consider how A can reach each state
 i�e��
what was the last input symbol� and in what state was A just before reading
that symbol�

Since the language of this automaton is the set of strings w such that  ��q�� w�
contains q� �because q� is the only accepting state�� the proof of these three
statements� in particular the proof of ���� guarantees that the language of this
NFA is the set of strings ending in ��� The proof of the theorem is an induction
on jwj� the length of w� starting with length ��

BASIS� If jwj � �� then w � �� Statement ��� says that  ��q�� �� contains q��

which it does by the basis part of the denition of  �� For statement ���� we

know that � does not end in �� and we also know that  ��q�� �� does not contain

q�� again by the basis part of the denition of  �� Thus� the hypotheses of both
directions of the if	and	only	if statement are false� and therefore both directions
of the statement are true� The proof of statement ��� for w � � is essentially
the same as the above proof for statement ����

INDUCTION� Assume that w � xa� where a is a symbol� either � or �� We
may assume statements ��� through ��� hold for x� and we need to prove them
for w� That is� we assume jwj � n � �� so jxj � n� We assume the inductive
hypothesis for n and prove it for n� ��

�� We know that  ��q�� x� contains q�� Since there are transitions on both

� and � from q� to itself� it follows that  ��q�� w� also contains q�� so
statement ��� is proved for w�
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�� �If� Assume that w ends in �
 i�e�� a � �� By statement ��� applied to x�

we know that  ��q�� x� contains q�� Since there is a transition from q� to

q� on input �� we conclude that  ��q�� w� contains q��

�Only	if� Suppose  ��q�� w� contains q�� If we look at the diagram of
Fig� ���� we see that the only way to get into state q� is if the input
sequence w is of the form x�� That is enough to prove the �only	if�
portion of statement ����

�� �If� Assume that w ends in ��� Then if w � xa� we know that a � � and

x ends in �� By statement ��� applied to x� we know that  ��q�� x� contains
q�� Since there is a transition from q� to q� on input �� we conclude that
 ��q�� w� contains q��

�Only	if� Suppose  ��q�� w� contains q�� Looking at the diagram of Fig� ����
we discover that the only way to get to state q� is for w to be of the form
x�� where  ��q�� x� contains q�� By statement ��� applied to x� we know
that x ends in �� Thus� w ends in ��� and we have proved statement ����

�

����
 Equivalence of Deterministic and Nondeterministic
Finite Automata

Although there are many languages for which an NFA is easier to construct
than a DFA� such as the language �Example ���� of strings that end in ��� it is
a surprising fact that every language that can be described by some NFA can
also be described by some DFA� Moreover� the DFA in practice has about as
many states as the NFA� although it often has more transitions� In the worst
case� however� the smallest DFA can have �n states while the smallest NFA for
the same language has only n states�

The proof that DFA�s can do whatever NFA�s can do involves an important
�construction� called the subset construction because it involves constructing all
subsets of the set of states of the NFA� In general� many proofs about automata
involve constructing one automaton from another� It is important for us to
observe the subset construction as an example of how one formally describes one
automaton in terms of the states and transitions of another� without knowing
the specics of the latter automaton�

The subset construction starts from an NFA N � �QN ��� �N � q�� FN �� Its
goal is the description of a DFA D � �QD��� �D� fq�g� FD� such that L�D� �
L�N�� Notice that the input alphabets of the two automata are the same� and
the start state of D is the set containing only the start state of N � The other
components of D are constructed as follows�

� QD is the set of subsets of QN 
 i�e�� QD is the power set of QN � Note
that if QN has n states� then QD will have �n states� Often� not all these
states are accessible from the start state of QD� Inaccessible states can
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be �thrown away�� so e�ectively� the number of states of D may be much
smaller than �n�

� FD is the set of subsets S of QN such that S � FN �� �� That is� FD is
all sets of N �s states that include at least one accepting state of N �

� For each set S � QN and for each input symbol a in ��

�D�S� a� �
�

p in S

�N �p� a�

That is� to compute �D�S� a� we look at all the states p in S� see what
states N goes to from p on input a� and take the union of all those states�

� �

� � �
� fq�g fq�� q�g fq�g
fq�g � fq�g
fq�g � �

fq�� q�g fq�� q�g fq�� q�g
fq�� q�g fq�� q�g fq�g
fq�� q�g � fq�g

fq�� q�� q�g fq�� q�g fq�� q�g

Figure ����� The complete subset construction from Fig� ���

Example ���� � Let N be the automaton of Fig� ��� that accepts all strings
that end in ��� Since N �s set of states is fq�� q�� q�g� the subset construction
produces a DFA with �� � � states� corresponding to all the subsets of these
three states� Figure ���� shows the transition table for these eight states
 we
shall show shortly the details of how some of these entries are computed�

Notice that this transition table belongs to a deterministic nite automaton�
Even though the entries in the table are sets� the states of the constructed DFA
are sets� To make the point clearer� we can invent new names for these states�
e�g�� A for �� B for fq�g� and so on� The DFA transition table of Fig ���� denes
exactly the same automaton as Fig� ����� but makes clear the point that the
entries in the table are single states of the DFA�

Of the eight states in Fig� ����� starting in the start state B� we can only
reach states B� E� and F � The other ve states are inaccessible from the start
state and may as well not be there� We often can avoid the exponential	time step
of constructing transition	table entries for every subset of states if we perform
�lazy evaluation� on the subsets� as follows�

BASIS� We know for certain that the singleton set consisting only of N �s start
state is accessible�
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� �

A A A
� B E B

C A D
D A A
E E F
F E B
G A D
H E F

Figure ����� Renaming the states of Fig� ����

INDUCTION� Suppose we have determined that set S of states is accessible�
Then for each input symbol a� compute the set of states �D�S� a�
 we know that
these sets of states will also be accessible�

For the example at hand� we know that fq�g is a state of the DFA D� We
nd that �D�fq�g� �� � fq�� q�g and �D�fq�g� �� � fq�g� Both these facts are
established by looking at the transition diagram of Fig� ��� and observing that
on � there are arcs out of q� to both q� and q�� while on � there is an arc only
to q�� We thus have one row of the transition table for the DFA� the second
row in Fig� �����

One of the two sets we computed is �old�
 fq�g has already been considered�
However� the other � fq�� q�g � is new and its transitions must be computed�
We nd �D�fq�� q�g� �� � fq�� q�g and �D�fq�� q�g� �� � fq�� q�g� For instance�
to see the latter calculation� we know that

�D�fq�� q�g� �� � �N �q�� �� � �N �q�� �� � fq�g � fq�g � fq�� q�g

We now have the fth row of Fig� ����� and we have discovered one new
state of D� which is fq�� q�g� A similar calculation tells us

�D�fq�� q�g� �� � �N �q�� �� � �N �q�� �� � fq�� q�g � � � fq�� q�g
�D�fq�� q�g� �� � �N �q�� �� � �N �q�� �� � fq�g � � � fq�g

These calculations give us the sixth row of Fig� ����� but it gives us only sets
of states that we have already seen�

Thus� the subset construction has converged
 we know all the accessible
states and their transitions� The entire DFA is shown in Fig� ����� Notice that
it has only three states� which is� by coincidence� exactly the same number of
states as the NFA of Fig� ���� from which it was constructed� However� the DFA
of Fig� ���� has six transitions� compared with the four transitions in Fig� ����
�

We need to show formally that the subset construction works� although
the intuition was suggested by the examples� After reading sequence of input
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Start

{ {q q {q0 0 0, ,q q1 2}}
0 1

1 0

0

1

}

Figure ����� The DFA constructed from the NFA of Fig ���

symbols w� the constructed DFA is in one state that is the set of NFA states
that the NFA would be in after reading w� Since the accepting states of the
DFA are those sets that include at least one accepting state of the NFA� and the
NFA also accepts if it gets into at least one of its accepting states� we may then
conclude that the DFA and NFA accept exactly the same strings� and therefore
accept the same language�

Theorem ���� � If D � �QD��� �D� fq�g� FD� is the DFA constructed from
NFA N � �QN ��� �N � q�� FN � by the subset construction� then L�D� � L�N��

PROOF� What we actually prove rst� by induction on jwj� is that

 �D�fq�g� w� �  �N �q�� w�

Notice that each of the  � functions returns a set of states from QN � but  �D
interprets this set as one of the states of QD �which is the power set of QN ��

while  �N interprets this set as a subset of QN �

BASIS� Let jwj � �
 that is� w � �� By the basis denitions of  � for DFA�s and

NFA�s� both  �D�fq�g� �� and  �N �q�� �� are fq�g�

INDUCTION� Let w be of length n � �� and assume the statement for length
n� Break w up as w � xa� where a is the nal symbol of w� By the induc	
tive hypothesis�  �D�fq�g� x� �  �N �q�� x�� Let both these sets of N �s states be
fp�� p�� � � � � pkg�

The inductive part of the denition of  � for NFA�s tells us

 �N �q�� w� �
k�
i��

�N �pi� a� �����

The subset construction� on the other hand� tells us that

�D�fp�� p�� � � � � pkg� a� �
k�
i��

�N �pi� a� �����

Now� let us use ����� and the fact that  �D�fq�g� x� � fp�� p�� � � � � pkg in the

inductive part of the denition of  � for DFA�s�
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 �D�fq�g� w� � �D
�
 �D�fq�g� x�� a

�
� �D�fp�� p�� � � � � pkg� a� �

k�
i��

�N �pi� a�

�����

Thus� Equations ����� and ����� demonstrate that  �D�fq�g� w� �  �N�q�� w��

When we observe that D and N both accept w if and only if  �D�fq�g� w� or
 �N �q�� w�� respectively� contain a state in FN � we have a complete proof that
L�D� � L�N�� �

Theorem ���� � A language L is accepted by some DFA if and only if L is
accepted by some NFA�

PROOF� �If� The �if� part is the subset construction and Theorem �����

�Only	if� This part is easy
 we have only to convert a DFA into an identical NFA�
Put intuitively� if we have the transition diagram for a DFA� we can also inter	
pret it as the transition diagram of an NFA� which happens to have exactly one
choice of transition in any situation� More formally� let D � �Q��� �D� q�� F �
be a DFA� Dene N � �Q��� �N � q�� F � to be the equivalent NFA� where �N is
dened by the rule�

� If �D�q� a� � p� then �N �q� a� � fpg�

It is then easy to show by induction on jwj� that if  �D�q�� w� � p then

 �N�q�� w� � fpg

We leave the proof to the reader� As a consequence� w is accepted by D if and
only if it is accepted by N 
 i�e�� L�D� � L�N�� �

����� A Bad Case for the Subset Construction

In Example ���� we found that the DFA had no more states than the NFA�
As we mentioned� it is quite common in practice for the DFA to have roughly
the same number of states as the NFA from which it is constructed� However�
exponential growth in the number of states is possible
 all the �n DFA states
that we could construct from an n	state NFA may turn out to be accessible� The
following example does not quite reach that bound� but it is an understandable
way to reach �n states in the smallest DFA that is equivalent to an n��	state
NFA�

Example ���� � Consider the NFA N of Fig� ����� L�N� is the set of all strings
of ��s and ��s such that the nth symbol from the end is �� Intuitively� a DFA
D that accepts this language must remember the last n symbols it has read�
Since any of �n subsets of the last n symbols could have been �� if D has fewer
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than �n states� then there would be some state q such that D can be in state q
after reading two di�erent sequences of n bits� say a�a� � � �an and b�b� � � � bn�

Since the sequences are di�erent� they must di�er in some position� say
ai �� bi� Suppose �by symmetry� that ai � � and bi � �� If i � �� then q
must be both an accepting state and a nonaccepting state� since a�a� � � �an is
accepted �the nth symbol from the end is �� and b�b� � � � bn is not� If i � ��
then consider the state p that D enters after reading i � � ��s� Then p must
be both accepting and nonaccepting� since aiai�� � � � an�� � � � � is accepted and
bibi�� � � � bn�� � � � � is not�

Start

0, 1

0, 1 0, 1 0, 1
q q qq0 1 2 n

1 0, 1

Figure ����� This NFA has no equivalent DFA with fewer than �n states

Now� let us see how the NFA N of Fig� ���� works� There is a state q� that
the NFA is always in� regardless of what inputs have been read� If the next
input is �� N may also �guess� that this � will be the nth symbol from the end�
so it goes to state q� as well as q�� From state q�� any input takes N to q��
the next input takes it to q�� and so on� until n � � inputs later� it is in the
accepting state qn� The formal statement of what the states of N do is�

�� N is in state q� after reading any sequence of inputs w�

�� N is in state qi� for i � �� �� � � � � n� after reading input sequence w if and
only if the ith symbol from the end of w is �
 that is� w is of the form
x�a�a� � � �ai��� where the aj �s are each input symbols�

We shall not prove these statements formally
 the proof is an easy induction
on jwj� mimicking Example ���� To complete the proof that the automaton
accepts exactly those strings with a � in the nth position from the end� we
consider statement ��� with i � n� That says N is in state qn if and only if
the nth symbol from the end is �� But qn is the only accepting state� so that
condition also characterizes exactly the set of strings accepted by N � �

���� Exercises for Section ���

� Exercise ����� � Convert to a DFA the following NFA�

� �

� p fp� qg fpg
q frg frg
r fsg �
s fsg fsg
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The Pigeonhole Principle

In Example ���� we used an important reasoning technique called the
pigeonhole principle� Colloquially� if you have more pigeons than pigeon	
holes� and each pigeon �ies into some pigeonhole� then there must be at
least one hole that has more than one pigeon� In our example� the �pi	
geons� are the sequences of n bits� and the �pigeonholes� are the states�
Since there are fewer states than sequences� one state must be assigned
two sequences�

The pigeonhole principle may appear obvious� but it actually depends
on the number of pigeonholes being nite� Thus� it works for nite	state
automata� with the states as pigeonholes� but does not apply to other
kinds of automata that have an innite number of states�

To see why the niteness of the number of pigeonholes is essential�
consider the innite situation where the pigeonholes correspond to integers
�� �� � � � � Number the pigeons �� �� �� � � � � so there is one more pigeon than
there are pigeonholes� However� we can send pigeon i to hole i� � for all
i � �� Then each of the innite number of pigeons gets a pigeonhole� and
no two pigeons have to share a pigeonhole�

Exercise ����� � Convert to a DFA the following NFA�

� �

� p fq� sg fqg
q frg fq� rg
r fsg fpg
s � fpg

� Exercise ����� � Convert the following NFA to a DFA and informally describe
the language it accepts�

� �

� p fp� qg fpg
q fr� sg ftg
r fp� rg ftg
s � �
t � �

� Exercise ����� � Give nondeterministic nite automata to accept the following
languages� Try to take advantage of nondeterminism as much as possible�
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Dead States and DFA�s Missing Some Transitions

We have formally dened a DFA to have a transition from any state�
on any input symbol� to exactly one state� However� sometimes� it is
more convenient to design the DFA to �die� in situations where we know
it is impossible for any extension of the input sequence to be accepted�
For instance� observe the automaton of Fig� ���� which did its job by
recognizing a single keyword� then� and nothing else� Technically� this
automaton is not a DFA� because it lacks transitions on most symbols
from each of its states�

However� such an automaton is an NFA� If we use the subset construc	
tion to convert it to a DFA� the automaton looks almost the same� but it
includes a dead state� that is� a nonaccepting state that goes to itself on
every possible input symbol� The dead state corresponds to �� the empty
set of states of the automaton of Fig� ����

In general� we can add a dead state to any automaton that has no
more than one transition for any state and input symbol� Then� add a
transition to the dead state from each other state q� on all input symbols
for which q has no other transition� The result will be a DFA in the strict
sense� Thus� we shall sometimes refer to an automaton as a DFA if it has
at most one transition out of any state on any symbol� rather than if it
has exactly one transition�

� a� The set of strings over alphabet f�� �� � � � � �g such that the nal digit has
appeared before�

b� The set of strings over alphabet f�� �� � � � � �g such that the nal digit has
not appeared before�

c� The set of strings of ��s and ��s such that there are two ��s separated by
a number of positions that is a multiple of �� Note that � is an allowable
multiple of ��

Exercise ����� � In the only	if portion of Theorem ���� we omitted the proof
by induction on jwj that if  �D�q�� w� � p then  �N �q�� w� � fpg� Supply this
proof�

� Exercise ����
 � In the box on �Dead States and DFA�s Missing Some Tran	
sitions�� we claim that if N is an NFA that has at most one choice of state for
any state and input symbol �i�e�� ��q� a� never has size greater than ��� then the
DFA D constructed from N by the subset construction has exactly the states
and transitions of N plus transitions to a new dead state whenever N is missing
a transition for a given state and input symbol� Prove this contention�
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Exercise ����� � In Example ���� we claimed that the NFA N is in state qi�
for i � �� �� � � � � n� after reading input sequence w if and only if the ith symbol
from the end of w is �� Prove this claim�

��� An Application
 Text Search

In this section� we shall see that the abstract study of the previous section�
where we considered the �problem� of deciding whether a sequence of bits ends
in ��� is actually an excellent model for several real problems that appear in
applications such as Web search and extraction of information from text�

����� Finding Strings in Text

A common problem in the age of the Web and other on	line text repositories
is the following� Given a set of words� nd all documents that contain one
�or all� of those words� A search engine is a popular example of this process�
The search engine uses a particular technology� called inverted indexes� where
for each word appearing on the Web �there are ����������� di�erent words��
a list of all the places where that word occurs is stored� Machines with very
large amounts of main memory keep the most common of these lists available�
allowing many people to search for documents at once�

Inverted	index techniques do not make use of nite automata� but they also
take very large amounts of time for crawlers to copy the Web and set up the
indexes� There are a number of related applications that are unsuited for in	
verted indexes� but are good applications for automaton	based techniques� The
characteristics that make an application suitable for searches that use automata
are�

�� The repository on which the search is conducted is rapidly changing� For
example�

�a� Every day� news analysts want to search the day�s on	line news arti	
cles for relevant topics� For example� a nancial analyst might search
for certain stock ticker symbols or names of companies�

�b� A �shopping robot� wants to search for the current prices charged
for the items that its clients request� The robot will retrieve current
catalog pages from the Web and then search those pages for words
that suggest a price for a particular item�

�� The documents to be searched cannot be cataloged� For example� Ama	
zon�com does not make it easy for crawlers to nd all the pages for all the
books that the company sells� Rather� these pages are generated �on the
�y� in response to queries� However� we could send a query for books on
a certain topic� say �nite automata�� and then search the pages retrieved
for certain words� e�g�� �excellent� in a review portion�



���� AN APPLICATION� TEXT SEARCH ��

����� Nondeterministic Finite Automata for Text Search

Suppose we are given a set of words� which we shall call the keywords� and we
want to nd occurrences of any of these words� In applications such as these� a
useful way to proceed is to design a nondeterministic nite automaton� which
signals� by entering an accepting state� that it has seen one of the keywords�
The text of a document is fed� one character at a time to this NFA� which then
recognizes occurrences of the keywords in this text� There is a simple form to
an NFA that recognizes a set of keywords�

�� There is a start state with a transition to itself on every input symbol�
e�g� every printable ASCII character if we are examining text� Intuitively�
the start state represents a �guess� that we have not yet begun to see one
of the keywords� even if we have seen some letters of one of these words�

�� For each keyword a�a� � � � ak� there are k states� say q�� q�� � � � � qk� There
is a transition from the start state to q� on symbol a�� a transition from
q� to q� on symbol a�� and so on� The state qk is an accepting state and
indicates that the keyword a�a� � � �ak has been found�

Example ���� � Suppose we want to design an NFA to recognize occurrences
of the words web and ebay� The transition diagram for the NFA designed using
the rules above is in Fig� ����� State � is the start state� and we use � to stand
for the set of all printable ASCII characters� States � through � have the job
of recognizing web� while states � through � recognize ebay� �

1

2 3 4

5 6 7 8
Start

Σ
w

e

e

yb a

b

Figure ����� An NFA that searches for the words web and ebay

Of course the NFA is not a program� We have two major choices for an
implementation of this NFA�

�� Write a program that simulates this NFA by computing the set of states
it is in after reading each input symbol� The simulation was suggested in
Fig� �����

�� Convert the NFA to an equivalent DFA using the subset construction�
Then simulate the DFA directly�
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Some text	processing programs� such as advanced forms of the UNIX grep

command �egrep and fgrep� actually use a mixture of these two approaches�
However� for our purposes� conversion to a DFA is easy and is guaranteed not
to increase the number of states�

����� A DFA to Recognize a Set of Keywords

We can apply the subset construction to any NFA� However� when we apply that
construction to an NFA that was designed from a set of keywords� according to
the strategy of Section ������ we nd that the number of states of the DFA is
never greater than the number of states of the NFA� Since in the worst case the
number of states exponentiates as we go to the DFA� this observation is good
news and explains why the method of designing an NFA for keywords and then
constructing a DFA from it is used frequently� The rules for constructing the
set of DFA states is as follows�

a� If q� is the start state of the NFA� then fq�g is one of the states of the
DFA�

b� Suppose p is one of the NFA states� and it is reached from the start state
along a path whose symbols are a�a� � � � am� Then one of the DFA states
is the set of NFA states consisting of�

�� q��

�� p�

�� Every other state of the NFA that is reachable from q� by following
a path whose labels are a su�x of a�a� � � � am� that is� any sequence
of symbols of the form ajaj�� � � � am�

Note that in general� there will be one DFA state for each NFA state p� However�
in step �b�� two states may actually yield the same set of NFA states� and thus
become one state of the DFA� For example� if two of the keywords begin with
the same letter� say a� then the two NFA states that are reached from q� by an
arc labeled a will yield the same set of NFA states and thus get merged in the
DFA�

Example ���� � The construction of a DFA from the NFA of Fig� ���� is shown
in Fig� ����� Each of the states of the DFA is located in the same position as
the state p from which it is derived using rule �b� above� For example� consider
the state ���� which is our shorthand for f�� �� �g� This state was constructed
from state �� It includes the start state� �� because every set of the DFA states
does� It also includes state � because that state is reached from state � by a
su�x� e� of the string we that reaches state � in Fig� �����

The transitions for each of the DFA states may be calculated according to
the subset construction� However� the rule is simple� From any set of states that
includes the start state q� and some other states fp�� p�� � � � � png� determine� for
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Figure ����� Conversion of the NFA from Fig� ���� to a DFA

each symbol x� where the pi�s go in the NFA� and let this DFA state have a
transition labeled x to the DFA state consisting of q� and all the targets of the
pi�s and q� on symbol x� On all symbols x such that there are no transitions
out of any of the pi�s on symbol x� let this DFA state have a transition on x to
that state of the DFA consisting of q� and all states that are reached from q�
in the NFA following an arc labeled x�

For instance� consider state ��� of Fig� ����� The NFA of Fig� ���� has
transitions on symbol b from states � and � to states � and �� respectively�
Therefore� on symbol b� ��� goes to ���� On symbol e� there are no transitions
of the NFA out of � or �� but there is a transition from � to �� Thus� in the
DFA� ��� goes to �� on input e� Similarly� on input w� ��� goes to ���

On every other symbol x� there are no transitions out of � or �� and state �
goes only to itself� Thus� there are transitions from ��� to � on every symbol
in � other than b� e� and w� We use the notation � � b � e � w to represent
this set� and use similar representations of other sets in which a few symbols
are removed from �� �

����� Exercises for Section ���

Exercise ����� � Design NFA�s to recognize the following sets of strings�



�� CHAPTER �� FINITE AUTOMATA

� a� abc� abd� and aacd� Assume the alphabet is fa� b� c� dg�

b� 	
	
� 
	
� and 	

�

c� ab� bc� and ca� Assume the alphabet is fa� b� cg�

Exercise ����� � Convert each of your NFA�s from Exercise ����� to DFA�s�

��� Finite Automata With Epsilon�Transitions

We shall now introduce another extension of the nite automaton� The new
�feature� is that we allow a transition on �� the empty string� In e�ect� an
NFA is allowed to make a transition spontaneously� without receiving an input
symbol� Like the nondeterminism added in Section ���� this new capability does
not expand the class of languages that can be accepted by nite automata� but it
does give us some added �programming convenience�� We shall also see� when
we take up regular expressions in Section ���� how NFA�s with �	transitions�
which we call ��NFA�s� are closely related to regular expressions and useful
in proving the equivalence between the classes of languages accepted by nite
automata and by regular expressions�

��
�� Uses of ��Transitions

We shall begin with an informal treatment of �	NFA�s� using transition diagrams
with � allowed as a label� In the examples to follow� think of the automaton
as accepting those sequences of labels along paths from the start state to an
accepting state� However� each � along a path is �invisible�
 i�e�� it contributes
nothing to the string along the path�

Example ���
 � In Fig� ���� is an �	NFA that accepts decimal numbers con	
sisting of�

�� An optional � or � sign�

�� A string of digits�

�� A decimal point� and

�� Another string of digits� Either this string of digits� or the string ��� can
be empty� but at least one of the two strings of digits must be nonempty�

Of particular interest is the transition from q� to q� on any of �� �� or ��
Thus� state q� represents the situation in which we have seen the sign if there
is one� and perhaps some digits� but not the decimal point� State q� represents
the situation where we have just seen the decimal point� and may or may not
have seen prior digits� In q� we have denitely seen at least one digit� but
not the decimal point� Thus� the interpretation of q� is that we have seen a
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Figure ����� An �	NFA accepting decimal numbers

decimal point and at least one digit� either before or after the decimal point�
We may stay in q� reading whatever digits there are� and also have the option
of �guessing� the string of digits is complete and going spontaneously to q�� the
accepting state� �

Example ���� � The strategy we outlined in Example ���� for building an
NFA that recognizes a set of keywords can be simplied further if we allow
�	transitions� For instance� the NFA recognizing the keywords web and ebay�
which we saw in Fig� ����� can also be implemented with �	transitions as in
Fig� ����� In general� we construct a complete sequence of states for each
keyword� as if it were the only word the automaton needed to recognize� Then�
we add a new start state �state � in Fig� ������ with �	transitions to the start	
states of the automata for each of the keywords� �
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Figure ����� Using �	transitions to help recognize keywords

��
�� The Formal Notation for an ��NFA

We may represent an �	NFA exactly as we do an NFA� with one exception� the
transition function must include information about transitions on �� Formally�
we represent an �	NFA A by A � �Q��� �� q�� F �� where all components have
their same interpretation as for an NFA� except that � is now a function that
takes as arguments�

�� A state in Q� and
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�� A member of � � f�g� that is� either an input symbol� or the symbol ��
We require that �� the symbol for the empty string� cannot be a member
of the alphabet �� so no confusion results�

Example ���� � The �	NFA of Fig� ���� is represented formally as

E � �fq�� q�� � � � � q�g� f������ �� �� � � � � �g� �� q�� fq�g�

where � is dened by the transition table in Fig� ����� �

� ��� � �� �� � � � � �

q� fq�g fq�g � �
q� � � fq�g fq�� q�g
q� � � � fq�g
q� fq�g � � fq�g
q� � � fq�g �
q� � � � �

Figure ����� Transition table for Fig� ����

��
�� Epsilon�Closures

We shall proceed to give formal denitions of an extended transition function for
�	NFA�s� which leads to the denition of acceptance of strings and languages by
these automata� and eventually lets us explain why �	NFA�s can be simulated by
DFA�s� However� we rst need to learn a central denition� called the ��closure
of a state� Informally� we �	close a state q by following all transitions out of
q that are labeled �� However� when we get to other states by following �� we
follow the �	transitions out of those states� and so on� eventually nding every
state that can be reached from q along any path whose arcs are all labeled ��
Formally� we dene the �	closure ECLOSE�q� recursively� as follows�

BASIS� State q is in ECLOSE�q��

INDUCTION� If state p is in ECLOSE�q�� and there is a transition from state p
to state r labeled �� then r is in ECLOSE�q�� More precisely� if � is the transition
function of the �	NFA involved� and p is in ECLOSE�q�� then ECLOSE�q� also
contains all the states in ��p� ���

Example ��� � For the automaton of Fig� ����� each state is its own �	closure�
with two exceptions� ECLOSE�q�� � fq�� q�g and ECLOSE�q�� � fq�� q�g� The
reason is that there are only two �	transitions� one that adds q� to ECLOSE�q��
and the other that adds q� to ECLOSE�q���
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Figure ����� Some states and transitions

A more complex example is given in Fig� ����� For this collection of states�
which may be part of some �	NFA� we can conclude that

ECLOSE��� � f�� �� �� �� �g

Each of these states can be reached from state � along a path exclusively labeled
�� For example� state � is reached by the path � � � � � � �� State � is not
in ECLOSE���� since although it is reachable from state �� the path must use
the arc � � � that is not labeled �� The fact that state � is also reached from
state � along a path �� �� �� � that has non	� transitions is unimportant�
The existence of one path with all labels � is su�cient to show state � is in
ECLOSE���� �

We sometimes need to apply the �	closure to a set of states S� We do so my
taking the union of the �	closures of the individual states
 that is� ECLOSE�S� �S
q in S ECLOSE�q��

��
�� Extended Transitions and Languages for ��NFA�s

The �	closure allows us to explain easily what the transitions of an �	NFA look
like when given a sequence of �non	�� inputs� From there� we can dene what
it means for an �	NFA to accept its input�

Suppose that E � �Q��� �� q�� F � is an �	NFA� We rst dene  �� the extended
transition function� to re�ect what happens on a sequence of inputs� The intent
is that  ��q� w� is the set of states that can be reached along a path whose labels�
when concatenated� form the string w� As always� ��s along this path do not
contribute to w� The appropriate recursive denition of  � is�

BASIS�  ��q� �� � ECLOSE�q�� That is� if the label of the path is �� then we can
follow only �	labeled arcs extending from state q
 that is exactly what ECLOSE

does�

INDUCTION� Suppose w is of the form xa� where a is the last symbol of w�
Note that a is a member of �
 it cannot be �� which is not in �� We compute
 ��q� w� as follows�

�� Let fp�� p�� � � � � pkg be  ��q� x�� That is� the pi�s are all and only the states
that we can reach from q following a path labeled x� This path may end
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with one or more transitions labeled �� and may have other �	transitions�
as well�

�� Let
Sk
i�� ��pi� a� be the set fr�� r�� � � � � rmg� That is� follow all transitions

labeled a from states we can reach from q along paths labeled x� The
rj �s are some of the states we can reach from q along paths labeled w�
The additional states we can reach are found from the rj �s by following
�	labeled arcs in step ���� below�

�� Then  ��q� w� � ECLOSE�fr�� r�� � � � � rmg�� This additional closure step
includes all the paths from q labeled w� by considering the possibility
that there are additional �	labeled arcs that we can follow after making a
transition on the nal �real� symbol� a�

Example ���� � Let us compute  ��q�� ���� for the �	NFA of Fig� ����� A
summary of the steps needed are as follows�

�  ��q�� �� � ECLOSE�q�� � fq�� q�g�

� Compute  ��q�� �� as follows�

�� First compute the transitions on input � from the states q� and q�
that we obtained in the calculation of  ��q�� ��� above� That is� we
compute ��q�� �� � ��q�� �� � fq�� q�g�

�� Next� �	close the members of the set computed in step ���� We get
ECLOSE�q�� � ECLOSE�q�� � fq�g � fq�g � fq�� q�g� That set is
 ��q�� ��� This two	step pattern repeats for the next two symbols�

� Compute  ��q�� ��� as follows�

�� First compute ��q�� �� � ��q�� �� � fq�g � fq�g � fq�� q�g�

�� Then compute

 ��q�� ��� � ECLOSE�q�� � ECLOSE�q�� � fq�g � fq�� q�g � fq�� q�� q�g

� Compute  ��q�� ���� as follows�

�� First compute ��q�� �� � ��q�� �� � ��q�� �� � fq�g � fq�g � � �
fq�g�

�� Then compute  ��q�� ���� � ECLOSE�q�� � fq�� q�g�

�

Now� we can dene the language of an �	NFA E � �Q��� �� q�� F � in the

expected way� L�E� � fw j  ��q�� w� � F �� �g� That is� the language of E is
the set of strings w that take the start state to at least one accepting state� For
instance� we saw in Example ���� that  ��q�� ���� contains the accepting state
q�� so the string ��� is in the language of that �	NFA�
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��
�
 Eliminating ��Transitions

Given any �	NFA E� we can nd a DFA D that accepts the same language as E�
The construction we use is very close to the subset construction� as the states of
D are subsets of the states of E� The only di�erence is that we must incorporate
�	transitions of E� which we do through the mechanism of the �	closure�

Let E � �QE ��� �E � q�� FE�� Then the equivalent DFA

D � �QD��� �D� qD� FD�

is dened as follows�

�� QD is the set of subsets of QE � More precisely� we shall nd that all
accessible states of D are ��closed subsets of QE� that is� sets S � QE

such that S � ECLOSE�S�� Put another way� the �	closed sets of states S
are those such that any �	transition out of one of the states in S leads to
a state that is also in S� Note that � is an �	closed set�

�� qD � ECLOSE�q��
 that is� we get the start state of D by closing the set
consisting of only the start state of E� Note that this rule di�ers from
the original subset construction� where the start state of the constructed
automaton was just the set containing the start state of the given NFA�

�� FD is those sets of states that contain at least one accepting state of E�
That is� FD � fS j S is in QD and S � FE �� �g�

�� �D�S� a� is computed� for all a in � and sets S in QD by�

�a� Let S � fp�� p�� � � � � pkg�

�b� Compute
Sk
i�� �E�pi� a�
 let this set be fr�� r�� � � � � rmg�

�c� Then �D�S� a� � ECLOSE�fr�� r�� � � � � rmg��

Example ���� � Let us eliminate �	transitions from the �	NFA of Fig� �����
which we shall call E in what follows� From E� we construct an DFA D� which
is shown in Fig� ����� However� to avoid clutter� we omitted from Fig� ���� the
dead state � and all transitions to the dead state� You should imagine that for
each state shown in Fig� ���� there are additional transitions from any state to
� on any input symbols for which a transition is not indicated� Also� the state
� has transitions to itself on all input symbols�

Since the start state of E is q�� the start state of D is ECLOSE�q��� which
is fq�� q�g� Our rst job is to nd the successors of q� and q� on the various
symbols in �
 note that these symbols are the plus and minus signs� the dot�
and the digits � through �� On � and �� q� goes nowhere in Fig� ����� while
q� goes to q�� Thus� to compute �D�fq�� q�g��� we start with fq�g and �	close
it� Since there are no �	transitions out of q�� we have �D�fq�� q�g��� � fq�g�
Similarly� �D�fq�� q�g��� � fq�g� These two transitions are shown by one arc
in Fig� �����
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Figure ����� The DFA D that eliminates �	transitions from Fig� ����

Next� we need to compute �D�fq�� q�g� ��� Since q� goes nowhere on the
dot� and q� goes to q� in Fig� ����� we must �	close fq�g� As there are no
�	transitions out of q�� this state is its own closure� so �D�fq�� q�g� �� � fq�g�

Finally� we must compute �D�fq�� q�g� ��� as an example of the transitions
from fq�� q�g on all the digits� We nd that q� goes nowhere on the digits� but
q� goes to both q� and q�� Since neither of those states have �	transitions out�
we conclude �D�fq�� q�g� �� � fq�� q�g� and likewise for the other digits�

We have now explained the arcs out of fq�� q�g in Fig� ����� The other
transitions are computed similarly� and we leave them for you to check� Since
q� is the only accepting state of E� the accepting states of D are those accessible
states that contain q�� We see these two sets fq�� q�g and fq�� q�� q�g indicated
by double circles in Fig� ����� �

Theorem ���� � A language L is accepted by some �	NFA if and only if L is
accepted by some DFA�

PROOF� �If� This direction is easy� Suppose L � L�D� for some DFA� Turn
D into an �	NFA E by adding transitions ��q� �� � � for all states q of D�
Technically� we must also convert the transitions of D on input symbols� e�g��
�D�q� a� � p into an NFA	transition to the set containing only p� that is
�E�q� a� � fpg� Thus� the transitions of E and D are the same� but E ex	
plicitly states that there are no transitions out of any state on ��

�Only	if� Let E � �QE ��� �E � q�� FE� be an �	NFA� Apply the modied
subset construction described above to produce the DFA

D � �QD��� �D� qD� FD�

We need to show that L�D� � L�E�� and we do so by showing that the extended

transition functions of E and D are the same� Formally� we show  �E�q�� w� �
 �D�qD � w� by induction on the length of w�
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BASIS� If jwj � �� then w � �� We know  �E�q�� �� � ECLOSE�q��� We also
know that qD � ECLOSE�q��� because that is how the start state of D is dened�

Finally� for a DFA� we know that  ��p� �� � p for any state p� so in particular�
 �D�qD � �� � ECLOSE�q��� We have thus proved that  �E�q�� �� �  �D�qD � ���

INDUCTION� Suppose w � xa� where a is the nal symbol of w� and assume
that the statement holds for x� That is�  �E�q�� x� �  �D�qD� x�� Let both these
sets of states be fp�� p�� � � � � pkg�

By the denition of  � for �	NFA�s� we compute  �E�q�� w� by�

�� Let fr�� r�� � � � � rmg be
Sk
i�� �E�pi� a��

�� Then  �E�q�� w� � ECLOSE�fr�� r�� � � � � rmg��

If we examine the construction of DFA D in the modied subset construction
above� we see that �D�fp�� p�� � � � � pkg� a� is constructed by the same two steps

��� and ��� above� Thus�  �D�qD � w�� which is �D�fp�� p�� � � � � pkg� a� is the same

set as  �E�q�� w�� We have now proved that  �E�q�� w� �  �D�qD� w� and completed
the inductive part� �

��
�� Exercises for Section ��


� Exercise ����� � Consider the following �	NFA�

� a b c

� p � fpg fqg frg
q fpg fqg frg �
r fqg frg � fpg

a� Compute the �	closure of each state�

b� Give all the strings of length three or less accepted by the automaton�

c� Convert the automaton to a DFA�

Exercise ����� � Repeat Exercise ����� for the following �	NFA�

� a b c

� p fq� rg � fqg frg
q � fpg frg fp� qg
r � � � �

Exercise ����� � Design �	NFA�s for the following languages� Try to use �	
transitions to simplify your design�

a� The set of strings consisting of zero or more a�s followed by zero or more
b�s� followed by zero or more c�s�
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� b� The set of strings that consist of either �� repeated one or more times or
��� repeated one or more times�

� c� The set of strings of ��s and ��s such that at least one of the last ten
positions is a ��

��� Summary of Chapter �

✦ Deterministic Finite Automata� A DFA has a nite set of states and a
nite set of input symbols� One state is designated the start state� and
zero or more states are accepting states� A transition function determines
how the state changes each time an input symbol is processed�

✦ Transition Diagrams � It is convenient to represent automata by a graph
in which the nodes are the states� and arcs are labeled by input symbols�
indicating the transitions of that automaton� The start state is designated
by an arrow� and the accepting states by double circles�

✦ Language of an Automaton� The automaton accepts strings� A string is
accepted if� starting in the start state� the transitions caused by processing
the symbols of that string one	at	a	time lead to an accepting state� In
terms of the transition diagram� a string is accepted if it is the label of a
path from the start state to some accepting state�

✦ Nondeterministic Finite Automata� The NFA di�ers from the DFA in
that the NFA can have any number of transitions �including zero� to next
states from a given state on a given input symbol�

✦ The Subset Construction� By treating sets of states of an NFA as states
of a DFA� it is possible to convert any NFA to a DFA that accepts the
same language�

✦ ��Transitions � We can extend the NFA by allowing transitions on an
empty input� i�e�� no input symbol at all� These extended NFA�s can be
converted to DFA�s accepting the same language�

✦ Text�Searching Applications � Nondeterministic nite automata are a use	
ful way to represent a pattern matcher that scans a large body of text for
one or more keywords� These automata are either simulated directly in
software or are rst converted to a DFA� which is then simulated�

��� Gradiance Problems for Chapter �

The following is a sample of problems that are available on	line through the
Gradiance system at www�gradiance�com�pearson� Each of these problems
is worked like conventional homework� The Gradiance system gives you four



��	� GRADIANCE PROBLEMS FOR CHAPTER � ��

choices that sample your knowledge of the solution� If you make the wrong
choice� you are given a hint or advice and encouraged to try the same problem
again�

Problem ��� � Examine the following DFA �shown on	line by the Gradiance
system�� Identify in the list below the string that this automaton accepts�

Problem ��� � The nite automaton below �shown on	line by the Gradiance
system� accepts no word of length zero� no word of length one� and only two
words of length two ��� and ���� There is a fairly simple recurrence equation for
the number N�k� of words of length k that this automaton accepts� Discover
this recurrence and demonstrate your understanding by identifying the correct
value of N�k� for some particular k� Note� the recurrence does not have an
easy	to	use closed form� so you will have to compute the rst few values by
hand� You do not have to compute N�k� for any k greater than ���

Problem ��� � Here is the transition function of a simple� deterministic au	
tomaton with start state A and accepting state B�

� �

A A B
B B A

We want to show that this automaton accepts exactly those strings with an odd
number of ��s� or more formally�

��A�w� � B if and only if w has an odd number of ��s�

Here� � is the extended transition function of the automaton
 that is� ��A�w�
is the state that the automaton is in after processing input string w The proof
of the statement above is an induction on the length of w� Below� we give the
proof with reasons missing� You must give a reason for each step� and then
demonstrate your understanding of the proof by classifying your reasons into
the following three categories�

A� Use of the inductive hypothesis�

B� Reasoning about properties of deterministic nite automata� e�g�� that if
string s � yz� then ��q� s� � ����q� y�� z��

C� Reasoning about properties of binary strings �strings of ��s and ��s�� e�g��
that every string is longer than any of its proper substrings�

Basis �jwj � ���

�� w � � because�

�� ��A� �� � A because�
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�� � has an even number of ��s because�

Induction �jwj � n � ��

�� There are two cases� �a� when w � x� and �b� when w � x� because�

Case �a��

�� In case �a�� w has an odd number of ��s if and only if x has an even
number of ��s because�

�� In case �a�� ��A� x� � A if and only if w has an odd number of ��s because�

�� In case �a�� ��A�w� � B if and only if w has an odd number of ��s because�

Case �b��

�� In case �b�� w has an odd number of ��s if and only if x has an odd number
of �� because�

�� In case �b�� ��A� x� � B if and only if w has an odd number of ��s because�

��� In case �b�� ��A�w� � B if and only if w has an odd number of ��s because�

Problem ��� � Convert the following nondeterministic nite automaton �shown
on	line by the Gradiance system� to a DFA� including the dead state� if neces	
sary� Which of the following sets of NFA states is not a state of the DFA that
is accessible from the start state of the DFA�

Problem ��� � The following nondeterministic nite automaton �shown on	line
by the Gradiance system� accepts which of the following strings�

Problem ��
 � Here is a nondeterministic nite automaton with epsilon	trans	
itions �shown on	line by the Gradiance system�� Suppose we use the extended
subset construction from Section ����� to convert this epsilon	NFA to a deter	
ministic nite automaton with a dead state� with all transitions dened� and
with no state that is inaccessible from the start state� Which of the following
would be a transition of the DFA�

Problem ��� � Here is an epsilon	NFA �shown on	line by the Gradiance sys	
tem�� Suppose we construct an equivalent DFA by the construction of Section
������ That is� start with the epsilon	closure of the start state A� For each set of
states S we construct �which becomes one state of the DFA�� look at the tran	
sitions from this set of states on input symbol �� See where those transitions
lead� and take the union of the epsilon	closures of all the states reached on ��
This set of states becomes a state of the DFA� Do the same for the transitions
out of S on input �� When we have found all the sets of epsilon	NFA states
that are constructed in this way� we have the DFA and its transitions� Carry
out this construction of a DFA� and identify one of the states of this DFA �as
a subset of the epsilon	NFA�s states� from the list below�
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Problem ��� � Identify which automata �in a set of diagrams shown on	line
by the Gradiance system� dene the same language and provide the correct
counterexample if they don�t� Choose the correct statement from the list below�

Problem �� � Examine the following DFA �shown on	line by the Gradiance
system�� This DFA accepts a certain language L� In this problem we shall
consider certain other languages that are dened by their tails� that is� languages
of the form �� � ��  w� for some particular string w of ��s and ��s� Call this
language L�w�� Depending on w� L�w� may be contained in L� disjoint from L�
or neither contained nor disjoint from L �i�e�� some strings of the form xw are
in L and others are not�� Your problem is to nd a way to classify w into one of
these three cases� Then� use your knowledge to classify the following languages�

�� L���������� i�e�� the language of regular expression �� � ��  ��������

�� L�������� i�e�� the language of regular expression �� � ��  ������

�� L��������� i�e�� the language of regular expression �� � ��  �������

�� L����������� i�e�� the language of regular expression �� � ��  ���������

Problem ���� � Here is a nondeterministic nite automaton �shown on	line by
the Gradiance system�� Convert this NFA to a DFA� using the �lazy� version of
the subset construction described in Section ������ so only the accessible states
are constructed� Which of the following sets of NFA states becomes a state of
the DFA�

Problem ���� � Here is a nondeterministic nite automaton �shown on	line by
the Gradiance system�� Some input strings lead to more than one state� Find�
in the list below� a string that leads from the start state A to three di�erent
states �possibly including A��

��	 References for Chapter �

The formal study of nite	state systems is generally regarded as originating
with ���� However� this work was based on a �neural nets� model of computing�
rather than the nite automaton we know today� The conventional DFA was
independently proposed� in several similar variations� by ���� ���� and ���� The
nondeterministic nite automaton and the subset construction are from ����

�� D� A� Hu�man� �The synthesis of sequential switching circuits�� J� Frank�
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