
Chapter �

Automata� The Methods

and the Madness

Automata theory is the study of abstract computing devices� or �machines��
Before there were computers� in the �����s� A� Turing studied an abstract ma	
chine that had all the capabilities of today�s computers� at least as far as in
what they could compute� Turing�s goal was to describe precisely the boundary
between what a computing machine could do and what it could not do
 his
conclusions apply not only to his abstract Turing machines� but to today�s real
machines�

In the �����s and �����s� simpler kinds of machines� which we today call
�nite automata�� were studied by a number of researchers� These automata�
originally proposed to model brain function� turned out to be extremely useful
for a variety of other purposes� which we shall mention in Section ���� Also in
the late �����s� the linguist N� Chomsky began the study of formal �grammars��
While not strictly machines� these grammars have close relationships to abstract
automata and serve today as the basis of some important software components�
including parts of compilers�

In ����� S� Cook extended Turing�s study of what could and what could
not be computed� Cook was able to separate those problems that can be solved
e�ciently by computer from those problems that can in principle be solved� but
in practice take so much time that computers are useless for all but very small
instances of the problem� The latter class of problems is called �intractable��
or �NP	hard�� It is highly unlikely that even the exponential improvement in
computing speed that computer hardware has been following ��Moore�s Law��
will have signicant impact on our ability to solve large instances of intractable
problems�

All of these theoretical developments bear directly on what computer scien	
tists do today� Some of the concepts� like nite automata and certain kinds of
formal grammars� are used in the design and construction of important kinds
of software� Other concepts� like the Turing machine� help us understand what

�

� CHAPTER �� AUTOMATA� THE METHODS AND THE MADNESS

we can expect from our software� Especially� the theory of intractable problems
lets us deduce whether we are likely to be able to meet a problem �head	on�
and write a program to solve it �because it is not in the intractable class�� or
whether we have to nd some way to work around the intractable problem�
nd an approximation� use a heuristic� or use some other method to limit the
amount of time the program will spend solving the problem�

In this introductory chapter� we begin with a very high	level view of what
automata theory is about� and what its uses are� Much of the chapter is de	
voted to a survey of proof techniques and tricks for discovering proofs� We cover
deductive proofs� reformulating statements� proofs by contradiction� proofs by
induction� and other important concepts� A nal section introduces the con	
cepts that pervade automata theory� alphabets� strings� and languages�

��� Why Study Automata Theory�

There are several reasons why the study of automata and complexity is an
important part of the core of Computer Science� This section serves to introduce
the reader to the principal motivation and also outlines the major topics covered
in this book�

����� Introduction to Finite Automata

Finite automata are a useful model for many important kinds of hardware and
software� We shall see� starting in Chapter �� examples of how the concepts are
used� For the moment� let us just list some of the most important kinds�

�� Software for designing and checking the behavior of digital circuits�

�� The �lexical analyzer� of a typical compiler� that is� the compiler com	
ponent that breaks the input text into logical units� such as identiers�
keywords� and punctuation�

�� Software for scanning large bodies of text� such as collections of Web
pages� to nd occurrences of words� phrases� or other patterns�

�� Software for verifying systems of all types that have a nite number of
distinct states� such as communications protocols or protocols for secure
exchange of information�

While we shall soon meet a precise denition of automata of various types�
let us begin our informal introduction with a sketch of what a nite automaton
is and does� There are many systems or components� such as those enumerated
above� that may be viewed as being at all times in one of a nite number
of �states�� The purpose of a state is to remember the relevant portion of the
system�s history� Since there are only a nite number of states� the entire history
generally cannot be remembered� so the system must be designed carefully� to

���� WHY STUDY AUTOMATA THEORY� �

remember what is important and forget what is not� The advantage of having
only a nite number of states is that we can implement the system with a xed
set of resources� For example� we could implement it in hardware as a circuit� or
as a simple form of program that can make decisions looking only at a limited
amount of data or using the position in the code itself to make the decision�

Example ��� � Perhaps the simplest nontrivial nite automaton is an on�o�
switch� The device remembers whether it is in the �on� state or the �o�� state�
and it allows the user to press a button whose e�ect is di�erent� depending on
the state of the switch� That is� if the switch is in the o� state� then pressing
the button changes it to the on state� and if the switch is in the on state� then
pressing the same button turns it to the o� state�

Push

Push

Start
onoff

Figure ���� A nite automaton modeling an on�o� switch

The nite	automaton model for the switch is shown in Fig� ���� As for all
nite automata� the states are represented by circles
 in this example� we have
named the states on and o�� Arcs between states are labeled by �inputs�� which
represent external in�uences on the system� Here� both arcs are labeled by the
input Push� which represents a user pushing the button� The intent of the two
arcs is that whichever state the system is in� when the Push input is received
it goes to the other state�

One of the states is designated the �start state�� the state in which the
system is placed initially� In our example� the start state is o�� and we conven	
tionally indicate the start state by the word Start and an arrow leading to that
state�

It is often necessary to indicate one or more states as �nal� or �accepting�
states� Entering one of these states after a sequence of inputs indicates that
the input sequence is good in some way� For instance� we could have regarded
the state on in Fig� ��� as accepting� because in that state� the device being
controlled by the switch will operate� It is conventional to designate accepting
states by a double circle� although we have not made any such designation in
Fig� ���� �

Example ��� � Sometimes� what is remembered by a state can be much more
complex than an on�o� choice� Figure ��� shows another nite automaton that
could be part of a lexical analyzer� The job of this automaton is to recognize
the keyword then� It thus needs ve states� each of which represents a di�erent

� CHAPTER �� AUTOMATA� THE METHODS AND THE MADNESS

position in the word then that has been reached so far� These positions corre	
spond to the prexes of the word� ranging from the empty string �i�e�� nothing
of the word has been seen so far� to the complete word�

t th the
Start t nh e

then

Figure ���� A nite automaton modeling recognition of then

In Fig� ���� the ve states are named by the prex of then seen so far� Inputs
correspond to letters� We may imagine that the lexical analyzer examines one
character of the program that it is compiling at a time� and the next character
to be examined is the input to the automaton� The start state corresponds to
the empty string� and each state has a transition on the next letter of then to
the state that corresponds to the next	larger prex� The state named then is
entered when the input has spelled the word then� Since it is the job of this
automaton to recognize when then has been seen� we could consider that state
the lone accepting state� �

����� Structural Representations

There are two important notations that are not automaton	like� but play an
important role in the study of automata and their applications�

�� Grammars are useful models when designing software that processes data
with a recursive structure� The best	known example is a �parser�� the
component of a compiler that deals with the recursively nested features
of the typical programming language� such as expressions � arithmetic�
conditional� and so on� For instance� a grammatical rule like E � E �E
states that an expression can be formed by taking any two expressions
and connecting them by a plus sign
 this rule is typical of how expressions
of real programming languages are formed� We introduce context	free
grammars� as they are usually called� in Chapter ��

�� Regular Expressions also denote the structure of data� especially text
strings� As we shall see in Chapter �� the patterns of strings they describe
are exactly the same as what can be described by nite automata� The
style of these expressions di�ers signicantly from that of grammars� and
we shall content ourselves with a simple example here� The UNIX	style
regular expression ��A�Z��a�z��� ��A�Z��A�Z�� represents capitalized
words followed by a space and two capital letters� This expression rep	
resents patterns in text that could be a city and state� e�g�� Ithaca NY�
It misses multiword city names� such as Palo Alto CA� which could be
captured by the more complex expression

��A�Z��a�z���� ��A�Z��a�z����� ��A�Z��A�Z��

���� INTRODUCTION TO FORMAL PROOF �

When interpreting such expressions� we only need to know that �A�Z�

represents a range of characters from capital �A� to capital �Z� �i�e�� any
capital letter�� and � � is used to represent the blank character alone�
Also� the symbol � represents �any number of� the preceding expression�
Parentheses are used to group components of the expression
 they do not
represent characters of the text described�

����� Automata and Complexity

Automata are essential for the study of the limits of computation� As we
mentioned in the introduction to the chapter� there are two important issues�

�� What can a computer do at all� This study is called �decidability�� and
the problems that can be solved by computer are called �decidable�� This
topic is addressed in Chapter ��

�� What can a computer do e�ciently� This study is called �intractabil	
ity�� and the problems that can be solved by a computer using no more
time than some slowly growing function of the size of the input are called
�tractable�� Often� we take all polynomial functions to be �slowly grow	
ing�� while functions that grow faster than any polynomial are deemed to
grow too fast� The subject is studied in Chapter ���

��� Introduction to Formal Proof

If you studied plane geometry in high school any time before the �����s� you
most likely had to do some detailed �deductive proofs�� where you showed
the truth of a statement by a detailed sequence of steps and reasons� While
geometry has its practical side �e�g�� you need to know the rule for computing
the area of a rectangle if you need to buy the correct amount of carpet for a
room�� the study of formal proof methodologies was at least as important a
reason for covering this branch of mathematics in high school�

In the USA of the �����s it became popular to teach proof as a matter
of personal feelings about the statement� While it is good to feel the truth
of a statement you need to use� important techniques of proof are no longer
mastered in high school� Yet proof is something that every computer scientist
needs to understand� Some computer scientists take the extreme view that a
formal proof of the correctness of a program should go hand	in	hand with the
writing of the program itself� We doubt that doing so is productive� On the
other hand� there are those who say that proof has no place in the discipline of
programming� The slogan �if you are not sure your program is correct� run it
and see� is commonly o�ered by this camp�

Our position is between these two extremes� Testing programs is surely
essential� However� testing goes only so far� since you cannot try your program
on every input� More importantly� if your program is complex � say a tricky

� CHAPTER �� AUTOMATA� THE METHODS AND THE MADNESS

recursion or iteration � then if you don�t understand what is going on as you
go around a loop or call a function recursively� it is unlikely that you will write
the code correctly� When your testing tells you the code is incorrect� you still
need to get it right�

To make your iteration or recursion correct� you need to set up an inductive
hypothesis� and it is helpful to reason� formally or informally� that the hypoth	
esis is consistent with the iteration or recursion� This process of understanding
the workings of a correct program is essentially the same as the process of prov	
ing theorems by induction� Thus� in addition to giving you models that are
useful for certain types of software� it has become traditional for a course on
automata theory to cover methodologies of formal proof� Perhaps more than
other core subjects of computer science� automata theory lends itself to natural
and interesting proofs� both of the deductive kind �a sequence of justied steps�
and the inductive kind �recursive proofs of a parameterized statement that use
the statement itself with �lower� values of the parameter��

����� Deductive Proofs

As mentioned above� a deductive proof consists of a sequence of statements
whose truth leads us from some initial statement� called the hypothesis or the
given statement�s�� to a conclusion statement� Each step in the proof must
follow� by some accepted logical principle� from either the given facts� or some
of the previous statements in the deductive proof� or a combination of these�

The hypothesis may be true or false� typically depending on values of its
parameters� Often� the hypothesis consists of several independent statements
connected by a logical AND� In those cases� we talk of each of these statements
as a hypothesis� or as a given statement�

The theorem that is proved when we go from a hypothesis H to a conclusion
C is the statement �ifH then C�� We say that C is deduced fromH � An example
theorem of the form �if H then C� will illustrate these points�

Theorem ��� � If x � �� then �x � x�� �

It is not hard to convince ourselves informally that Theorem ��� is true�
although a formal proof requires induction and will be left for Example �����
First� notice that the hypothesisH is �x � ��� This hypothesis has a parameter�
x� and thus is neither true nor false� Rather� its truth depends on the value of
the parameter x
 e�g�� H is true for x � � and false for x � ��

Likewise� the conclusion C is ��x � x��� This statement also uses parameter
x and is true for certain values of x and not others� For example� C is false for
x � �� since �� � �� which is not as large as �� � �� On the other hand� C is
true for x � �� since �� � �� � ��� For x � �� the statement is also true� since
�� � �� is at least as large as �� � ���

Perhaps you can see the intuitive argument that tells us the conclusion
�x � x� will be true whenever x � �� We already saw that it is true for x � ��
As x grows larger than �� the left side� �x doubles each time x increases by

���� INTRODUCTION TO FORMAL PROOF �

�� However� the right side� x�� grows by the ratio
�
x��
x

��
� If x � �� then

�x � ���x cannot be greater than ����� and therefore
�
x��
x

��
cannot be bigger

than ������� Since ������ � �� each time x increases above � the left side �x

grows more than the right side x�� Thus� as long as we start from a value like
x � � where the inequality �x � x� is already satised� we can increase x as
much as we like� and the inequality will still be satised�

We have now completed an informal but accurate proof of Theorem ���� We
shall return to the proof and make it more precise in Example ����� after we
introduce �inductive� proofs�

Theorem ���� like all interesting theorems� involves an innite number of
related facts� in this case the statement �if x � � then �x � x�� for all integers
x� In fact� we do not need to assume x is an integer� but the proof talked about
repeatedly increasing x by �� starting at x � �� so we really addressed only the
situation where x is an integer�

Theorem ��� can be used to help deduce other theorems� In the next ex	
ample� we consider a complete deductive proof of a simple theorem that uses
Theorem ����

Theorem ��� � If x is the sum of the squares of four positive integers� then
�x � x��

PROOF� The intuitive idea of the proof is that if the hypothesis is true for x�
that is� x is the sum of the squares of four positive integers� then x must be at
least �� Therefore� the hypothesis of Theorem ��� holds� and since we believe
that theorem� we may state that its conclusion is also true for x� The reasoning
can be expressed as a sequence of steps� Each step is either the hypothesis of
the theorem to be proved� part of that hypothesis� or a statement that follows
from one or more previous statements�

By �follows� we mean that if the hypothesis of some theorem is a previous
statement� then the conclusion of that theorem is true� and can be written down
as a statement of our proof� This logical rule is often called modus ponens
 i�e��
if we know H is true� and we know �if H then C� is true� we may conclude
that C is true� We also allow certain other logical steps to be used in creating
a statement that follows from one or more previous statements� For instance�
if A and B are two previous statements� then we can deduce and write down
the statement �A and B��

Figure ��� shows the sequence of statements we need to prove Theorem ����
While we shall not generally prove theorems in such a stylized form� it helps to
think of proofs as very explicit lists of statements� each with a precise justica	
tion� In step ���� we have repeated one of the given statements of the theorem�
that x is the sum of the squares of four integers� It often helps in proofs if we
name quantities that are referred to but not named� and we have done so here�
giving the four integers the names a� b� c� and d�

In step ���� we put down the other part of the hypothesis of the theorem�
that the values being squared are each at least �� Technically� this statement
represents four distinct statements� one for each of the four integers involved�

� CHAPTER �� AUTOMATA� THE METHODS AND THE MADNESS

Statement Justication

�� x � a� � b� � c� � d� Given
�� a � �
 b � �
 c � �
 d � � Given
�� a� � �
 b� � �
 c� � �
 d� � � ��� and properties of arithmetic
�� x � � ���� ���� and properties of arithmetic
�� �x � x� ��� and Theorem ���

Figure ���� A formal proof of Theorem ���

Then� in step ��� we observe that if a number is at least �� then its square is
also at least �� We use as a justication the fact that statement ��� holds� and
�properties of arithmetic�� That is� we assume the reader knows� or can prove
simple statements about how inequalities work� such as the statement �if y � ��
then y� � ���

Step ��� uses statements ��� and ���� The rst statement tells us that x is
the sum of the four squares in question� and statement ��� tells us that each of
the squares is at least �� Again using well	known properties of arithmetic� we
conclude that x is at least � � � � � � �� or ��

At the nal step ���� we use statement ���� which is the hypothesis of Theo	
rem ���� The theorem itself is the justication for writing down its conclusion�
since its hypothesis is a previous statement� Since the statement ��� that is
the conclusion of Theorem ��� is also the conclusion of Theorem ���� we have
now proved Theorem ���� That is� we have started with the hypothesis of that
theorem� and have managed to deduce its conclusion� �

����� Reduction to De�nitions

In the previous two theorems� the hypotheses used terms that should have
been familiar� integers� addition� and multiplication� for instance� In many
other theorems� including many from automata theory� the terms used in the
statement may have implications that are less obvious� A useful way to proceed
in many proofs is�

� If you are not sure how to start a proof� convert all terms in the hypothesis
to their denitions�

Here is an example of a theorem that is simple to prove once we have ex	
pressed its statement in elementary terms� It uses the following two denitions�

�� A set S is �nite if there exists an integer n such that S has exactly n
elements� We write kSk � n� where kSk is used to denote the number
of elements in a set S� If the set S is not nite� we say S is in�nite�
Intuitively� an innite set is a set that contains more than any integer
number of elements�

���� INTRODUCTION TO FORMAL PROOF �

�� If S and T are both subsets of some set U � then T is the complement of S
�with respect to U� if S � T � U and S � T � �� That is� each element
of U is in exactly one of S and T
 put another way� T consists of exactly
those elements of U that are not in S�

Theorem ��� � Let S be a nite subset of some innite set U � Let T be the
complement of S with respect to U � Then T is innite�

PROOF� Intuitively� this theorem says that if you have an innite supply of
something �U�� and you take a nite amount away �S�� then you still have an
innite amount left� Let us begin by restating the facts of the theorem as in
Fig� ����

Original Statement New Statement

S is nite There is a integer n
such that kSk � n

U is innite For no integer p
is kUk � p

T is the complement of S S � T � U and S � T � �

Figure ���� Restating the givens of Theorem ���

We are still stuck� so we need to use a common proof technique called �proof
by contradiction�� In this proof method� to be discussed further in Section ������
we assume that the conclusion is false� We then use that assumption� together
with parts of the hypothesis� to prove the opposite of one of the given statements
of the hypothesis� We have then shown that it is impossible for all parts of the
hypothesis to be true and for the conclusion to be false at the same time�
The only possibility that remains is for the conclusion to be true whenever the
hypothesis is true� That is� the theorem is true�

In the case of Theorem ���� the contradiction of the conclusion is �T is
nite�� Let us assume T is nite� along with the statement of the hypothesis
that says S is nite
 i�e�� kSk � n for some integer n� Similarly� we can restate
the assumption that T is nite as kTk � m for some integer m�

Now one of the given statements tells us that S � T � U � and S � T � ��
That is� the elements of U are exactly the elements of S and T � Thus� there
must be n �m elements of U � Since n �m is an integer� and we have shown
kUk � n�m� it follows that U is nite� More precisely� we showed the number
of elements in U is some integer� which is the denition of �nite�� But the
statement that U is nite contradicts the given statement that U is innite� We
have thus used the contradiction of our conclusion to prove the contradiction
of one of the given statements of the hypothesis� and by the principle of �proof
by contradiction� we may conclude the theorem is true� �

Proofs do not have to be so wordy� Having seen the ideas behind the proof�
let us reprove the theorem in a few lines�

�� CHAPTER �� AUTOMATA� THE METHODS AND THE MADNESS

Statements With Quanti�ers

Many theorems involve statements that use the quanti�ers �for all� and
�there exists�� or similar variations� such as �for every� instead of �for all��
The order in which these quantiers appear a�ects what the statement
means� It is often helpful to see statements with more than one quantier
as a �game� between two players � for	all and there	exists � who take
turns specifying values for the parameters mentioned in the theorem� �For	
all� must consider all possible choices� so for	all�s choices are generally left
as variables� However� �there	exists� only has to pick one value� which
may depend on the values picked by the players previously� The order in
which the quantiers appear in the statement determines who goes rst�
If the last player to make a choice can always nd some allowable value�
then the statement is true�

For example� consider an alternative denition of �innite set�� set S
is in�nite if and only if for all integers n� there exists a subset T of S with
exactly n members� Here� �for	all� precedes �there	exists�� so we must
consider an arbitrary integer n� Now� �there	exists� gets to pick a subset
T � and may use the knowledge of n to do so� For instance� if S were the
set of integers� �there	exists� could pick the subset T � f�� �� � � � � ng and
thereby succeed regardless of n� That is a proof that the set of integers is
innite�

The following statement looks like the denition of �innite�� but is
incorrect because it reverses the order of the quantiers� �there exists a
subset T of set S such that for all n� set T has exactly n members�� Now�
given a set S such as the integers� player �there	exists� can pick any set
T
 say f�� �� �g is picked� For this choice� player �for	all� must show that
T has n members for every possible n� However� �for	all� cannot do so�
For instance� it is false for n � �� or in fact for any n �� ��

PROOF� �of Theorem ���� We know that S � T � U and S and T are disjoint�
so kSk� kTk � kUk� Since S is nite� kSk � n for some integer n� and since U
is innite� there is no integer p such that kUk � p� So assume that T is nite

that is� kTk � m for some integer m� Then kUk � kSk� kTk � n�m� which
contradicts the given statement that there is no integer p equal to kUk� �

����� Other Theorem Forms

The �if	then� form of theorem is most common in typical areas of mathematics�
However� we see other kinds of statements proved as theorems also� In this
section� we shall examine the most common forms of statement and what we
usually need to do to prove them�

���� INTRODUCTION TO FORMAL PROOF ��

Ways of Saying �If�Then	

First� there are a number of kinds of theorem statements that look di�erent
from a simple �if H then C� form� but are in fact saying the same thing� if
hypothesis H is true for a given value of the parameter�s�� then the conclusion
C is true for the same value� Here are some of the other ways in which �if H
then C� might appear�

�� H implies C�

�� H only if C�

�� C if H �

�� Whenever H holds� C follows�

We also see many variants of form ���� such as �if H holds� then C follows�� or
�whenever H holds� C holds��

Example ��
 � The statement of Theorem ��� would appear in these four forms
as�

�� x � � implies �x � x��

�� x � � only if �x � x��

�� �x � x� if x � ��

�� Whenever x � �� �x � x� follows�

�

In addition� in formal logic one often sees the operator � in place of �if	
then�� That is� the statement �if H then C� could appear as H � C in some
mathematical literature
 we shall not use it here�

If�And�Only�If Statements

Sometimes� we nd a statement of the form �A if and only if B�� Other forms
of this statement are �A i� B��� �A is equivalent to B�� or �A exactly when
B�� This statement is actually two if	then statements� �if A then B�� and �if
B then A�� We prove �A if and only if B� by proving these two statements�

�� The if part � �if B then A�� and

�� The only�if part � �if A then B�� which is often stated in the equivalent
form �A only if B��

�� CHAPTER �� AUTOMATA� THE METHODS AND THE MADNESS

How Formal Do Proofs Have to Be�

The answer to this question is not easy� The bottom line regarding proofs
is that their purpose is to convince someone� whether it is a grader of your
classwork or yourself� about the correctness of a strategy you are using in
your code� If it is convincing� then it is enough
 if it fails to convince the
�consumer� of the proof� then the proof has left out too much�

Part of the uncertainty regarding proofs comes from the di�erent
knowledge that the consumer may have� Thus� in Theorem ���� we as	
sumed you knew all about arithmetic� and would believe a statement like
�if y � � then y� � ��� If you were not familiar with arithmetic� we would
have to prove that statement by some steps in our deductive proof�

However� there are certain things that are required in proofs� and
omitting them surely makes the proof inadequate� For instance� any de	
ductive proof that uses statements which are not justied by the given or
previous statements� cannot be adequate� When doing a proof of an �if
and only if� statement� we must surely have one proof for the �if� part and
another proof for the �only	if� part� As an additional example� inductive
proofs �discussed in Section ���� require proofs of the basis and induction
parts�

The proofs can be presented in either order� In many theorems� one part is
decidedly easier than the other� and it is customary to present the easy direction
rst and get it out of the way�

In formal logic� one may see the operator� or 	 to denote an �if	and	only	
if� statement� That is� A 	 B and A� B mean the same as �A if and only if
B��

When proving an if	and	only	if statement� it is important to remember that
you must prove both the �if� and �only	if� parts� Sometimes� you will nd it
helpful to break an if	and	only	if into a succession of several equivalences� That
is� to prove �A if and only if B�� you might rst prove �A if and only if C�� and
then prove �C if and only if B�� That method works� as long as you remember
that each if	and	only	if step must be proved in both directions� Proving any
one step in only one of the directions invalidates the entire proof�

The following is an example of a simple if	and	only	if proof� It uses the
notations�

�� bxc� the �oor of real number x� is the greatest integer equal to or less than
x�

�I�� short for �if and only if�� is a non�word that is used in some mathematical treatises
for succinctness�

���� ADDITIONAL FORMS OF PROOF ��

�� dxe� the ceiling of real number x� is the least integer equal to or greater
than x�

Theorem ��� � Let x be a real number� Then bxc � dxe if and only if x is an
integer�

PROOF� �Only	if part� In this part� we assume bxc � dxe and try to prove x is
an integer� Using the denitions of the �oor and ceiling� we notice that bxc
 x�
and dxe � x� However� we are given that bxc � dxe� Thus� we may substitute
the �oor for the ceiling in the rst inequality to conclude dxe
 x� Since
both dxe
 x and dxe � x hold� we may conclude by properties of arithmetic
inequalities that dxe � x� Since dxe is always an integer� x must also be an
integer in this case�

�If part� Now� we assume x is an integer and try to prove bxc � dxe� This part
is easy� By the denitions of �oor and ceiling� when x is an integer� both bxc
and dxe are equal to x� and therefore equal to each other� �

����� Theorems That Appear Not to Be If�Then
Statements

Sometimes� we encounter a theorem that appears not to have a hypothesis� An
example is the well	known fact from trigonometry�

Theorem ��� � sin� � � cos� � � �� �

Actually� this statement does have a hypothesis� and the hypothesis consists
of all the statements you need to know to interpret the statement� In particular�
the hidden hypothesis is that � is an angle� and therefore the functions sine
and cosine have their usual meaning for angles� From the denitions of these
terms� and the Pythagorean Theorem �in a right triangle� the square of the
hypotenuse equals the sum of the squares of the other two sides�� you could
prove the theorem� In essence� the if	then form of the theorem is really� �if �
is an angle� then sin� � � cos� � � ���

��� Additional Forms of Proof

In this section� we take up several additional topics concerning how to construct
proofs�

�� Proofs about sets�

�� Proofs by contradiction�

�� Proofs by counterexample�

�� CHAPTER �� AUTOMATA� THE METHODS AND THE MADNESS

����� Proving Equivalences About Sets

In automata theory� we are frequently asked to prove a theorem which says that
the sets constructed in two di�erent ways are the same sets� Often� these sets
are sets of character strings� and the sets are called �languages�� but in this
section the nature of the sets is unimportant� If E and F are two expressions
representing sets� the statement E � F means that the two sets represented
are the same� More precisely� every element in the set represented by E is in
the set represented by F � and every element in the set represented by F is in
the set represented by E�

Example �� � The commutative law of union says that we can take the union
of two sets R and S in either order� That is� R � S � S � R� In this case� E is
the expression R � S and F is the expression S � R� The commutative law of
union says that E � F � �

We can write a set	equalityE � F as an if	and	only	if statement� an element
x is in E if and only if x is in F � As a consequence� we see the outline of a
proof of any statement that asserts the equality of two sets E � F
 it follows
the form of any if	and	only	if proof�

�� Proof that if x is in E� then x is in F �

�� Prove that if x is in F � then x is in E�

As an example of this proof process� let us prove the distributive law of
union over intersection�

Theorem ���� � R � �S � T � � �R � S� � �R � T ��

PROOF� The two set	expressions involved are E � R � �S � T � and

F � �R � S� � �R � T �

We shall prove the two parts of the theorem in turn� In the �if� part we assume
element x is in E and show it is in F � This part� summarized in Fig� ���� uses
the denitions of union and intersection� with which we assume you are familiar�

Then� we must prove the �only	if� part of the theorem� Here� we assume x
is in F and show it is in E� The steps are summarized in Fig� ���� Since we
have now proved both parts of the if	and	only	if statement� the distributive law
of union over intersection is proved� �

����� The Contrapositive

Every if	then statement has an equivalent form that in some circumstances is
easier to prove� The contrapositive of the statement �if H then C� is �if not C
then not H �� A statement and its contrapositive are either both true or both
false� so we can prove either to prove the other�

To see why �if H then C� and �if not C then not H� are logically equivalent�
rst observe that there are four cases to consider�

���� ADDITIONAL FORMS OF PROOF ��

Statement Justication

�� x is in R � �S � T � Given
�� x is in R or x is in S � T ��� and denition of union
�� x is in R or x is in ��� and denition of intersection

both S and T
�� x is in R � S ��� and denition of union
�� x is in R � T ��� and denition of union
�� x is in �R � S� � �R � T � ���� ���� and denition

of intersection

Figure ���� Steps in the �if� part of Theorem ����

Statement Justication

�� x is in �R � S� � �R � T � Given
�� x is in R � S ��� and denition of intersection
�� x is in R � T ��� and denition of intersection
�� x is in R or x is in ���� ���� and reasoning

both S and T about unions
�� x is in R or x is in S � T ��� and denition of intersection
�� x is in R � �S � T � ��� and denition of union

Figure ���� Steps in the �only	if� part of Theorem ����

�� H and C both true�

�� H true and C false�

�� C true and H false�

�� H and C both false�

There is only one way to make an if	then statement false
 the hypothesis must
be true and the conclusion false� as in case ���� For the other three cases�
including case ��� where the conclusion is false� the if	then statement itself is
true�

Now� consider for which cases the contrapositive �if not C then not H� is
false� In order for this statement to be false� its hypothesis �which is �not C��
must be true� and its conclusion �which is �not H�� must be false� But �not
C� is true exactly when C is false� and �not H� is false exactly when H is true�
These two conditions are again case ���� which shows that in each of the four
cases� the original statement and its contrapositive are either both true or both
false
 i�e�� they are logically equivalent�

Example ���� � Recall Theorem ���� whose statement was� �if x � �� then
�x � x��� The contrapositive of this statement is �if not �x � x� then not

�� CHAPTER �� AUTOMATA� THE METHODS AND THE MADNESS

Saying �If�And�Only�If	 for Sets

As we mentioned� theorems that state equivalences of expressions about
sets are if	and	only	if statements� Thus� Theorem ���� could have been
stated� an element x is in R � �S � T � if and only if x is in

�R � S� � �R � T �

Another common expression of a set	equivalence is with the locution
�all	and	only�� For instance� Theorem ���� could as well have been stated
�the elements of R � �S � T � are all and only the elements of

�R � S� � �R � T �

The Converse

Do not confuse the terms �contrapositive� and �converse�� The converse
of an if	then statement is the �other direction�
 that is� the converse of �if
H then C� is �if C then H �� Unlike the contrapositive� which is logically
equivalent to the original� the converse is not equivalent to the original
statement� In fact� the two parts of an if	and	only	if proof are always
some statement and its converse�

x � ��� In more colloquial terms� making use of the fact that �not a � b� is
the same as a � b� the contrapositive is �if �x � x� then x � ��� �

When we are asked to prove an if	and	only	if theorem� the use of the con	
trapositive in one of the parts allows us several options� For instance� suppose
we want to prove the set equivalence E � F � Instead of proving �if x is in E
then x is in F and if x is in F then x is in E�� we could also put one direction
in the contrapositive� One equivalent proof form is�

� If x is in E then x is in F � and if x is not in E then x is not in F �

We could also interchange E and F in the statement above�

����� Proof by Contradiction

Another way to prove a statement of the form �if H then C� is to prove the
statement

���� ADDITIONAL FORMS OF PROOF ��

� �H and not C implies falsehood��

That is� start by assuming both the hypothesis H and the negation of the
conclusion C� Complete the proof by showing that something known to be
false follows logically from H and not C� This form of proof is called proof by
contradiction�

Example ���� � Recall Theorem ���� where we proved the if	then statement
with hypothesis H � �U is an innite set� S is a nite subset of U � and T is
the complement of S with respect to U �� The conclusion C was �T is innite��
We proceeded to prove this theorem by contradiction� We assumed �not C�

that is� we assumed T was nite�

Our proof was to derive a falsehood from H and not C� We rst showed
from the assumptions that S and T are both nite� that U also must be nite�
But since U is stated in the hypothesis H to be innite� and a set cannot be
both nite and innite� we have proved the logical statement �false�� In logical
terms� we have both a proposition p �U is nite� and its negation� not p �U
is innite�� We then use the fact that �p and not p� is logically equivalent to
�false�� �

To see why proofs by contradiction are logically correct� recall from Sec	
tion ����� that there are four combinations of truth values for H and C� Only
the second case� H true and C false� makes the statement �if H then C� false�
By showing that H and not C leads to falsehood� we are showing that case �
cannot occur� Thus� the only possible combinations of truth values for H and
C are the three combinations that make �if H then C� true�

����� Counterexamples

In real life� we are not told to prove a theorem� Rather� we are faced with some	
thing that seems true � a strategy for implementing a program for example �
and we need to decide whether or not the �theorem� is true� To resolve the
question� we may alternately try to prove the theorem� and if we cannot� try to
prove that its statement is false�

Theorems generally are statements about an innite number of cases� per	
haps all values of its parameters� Indeed� strict mathematical convention will
only dignify a statement with the title �theorem� if it has an innite number
of cases
 statements that have no parameters� or that apply to only a nite
number of values of its parameter�s� are called observations� It is su�cient to
show that an alleged theorem is false in any one case in order to show it is not a
theorem� The situation is analogous to programs� since a program is generally
considered to have a bug if it fails to operate correctly for even one input on
which it was expected to work�

It often is easier to prove that a statement is not a theorem than to prove
it is a theorem� As we mentioned� if S is any statement� then the statement
�S is not a theorem� is itself a statement without parameters� and thus can

�� CHAPTER �� AUTOMATA� THE METHODS AND THE MADNESS

be regarded as an observation rather than a theorem� The following are two
examples� rst of an obvious nontheorem� and the second a statement that just
misses being a theorem and that requires some investigation before resolving
the question of whether it is a theorem or not�

Alleged Theorem ���� � All primes are odd� �More formally� we might say�
if integer x is a prime� then x is odd��

DISPROOF� The integer � is a prime� but � is even� �

Now� let us discuss a �theorem� involving modular arithmetic� There is an
essential denition that we must rst establish� If a and b are positive integers�
then a mod b is the remainder when a is divided by b� that is� the unique integer
r between � and b � � such that a � qb � r for some integer q� For example�
� mod � � �� and � mod � � �� Our rst proposed theorem� which we shall
determine to be false� is�

Alleged Theorem ���� � There is no pair of integers a and b such that

a mod b � b mod a

�

When asked to do things with pairs of objects� such as a and b here� it is
often possible to simplify the relationship between the two by taking advantage
of symmetry� In this case� we can focus on the case where a � b� since if b � a
we can swap a and b and get the same equation as in Alleged Theorem �����
We must be careful� however� not to forget the third case� where a � b� This
case turns out to be fatal to our proof attempts�

Let us assume a � b� Then a mod b � a� since in the denition of a mod b
we have q � � and r � a� That is� when a � b we have a � � � b � a� But
b mod a � a� since anything mod a is between � and a� �� Thus� when a � b�
b mod a � a mod b� so a mod b � b mod a is impossible� Using the argument
of symmetry above� we also know that a mod b �� b mod a when b � a�

However� consider the third case� a � b� Since x mod x � � for any integer
x� we do have a mod b � b mod a if a � b� We thus have a disproof of the
alleged theorem�

DISPROOF� �of Alleged Theorem ����� Let a � b � �� Then

a mod b � b mod a � �

�

In the process of nding the counterexample� we have in fact discovered the
exact conditions under which the alleged theorem holds� Here is the correct
version of the theorem� and its proof�

Theorem ���� � a mod b � b mod a if and only if a � b�

���� INDUCTIVE PROOFS ��

PROOF� �If part� Assume a � b� Then as we observed above� x mod x � � for
any integer x� Thus� a mod b � b mod a � � whenever a � b�

�Only	if part� Now� assume a mod b � b mod a� The best technique is a
proof by contradiction� so assume in addition the negation of the conclusion

that is� assume a �� b� Then since a � b is eliminated� we have only to consider
the cases a � b and b � a�

We already observed above that when a � b� we have a mod b � a and
b mod a � a� Thus� these statements� in conjunction with the hypothesis
a mod b � b mod a lets us derive a contradiction�

By symmetry� if b � a then b mod a � b and a mod b � b� We again derive
a contradiction of the hypothesis� and conclude the only	if part is also true� We
have now proved both directions and conclude that the theorem is true� �

��� Inductive Proofs

There is a special form of proof� called �inductive�� that is essential when dealing
with recursively dened objects� Many of the most familiar inductive proofs
deal with integers� but in automata theory� we also need inductive proofs about
such recursively dened concepts as trees and expressions of various sorts� such
as the regular expressions that were mentioned brie�y in Section ������ In this
section� we shall introduce the subject of inductive proofs rst with �simple�
inductions on integers� Then� we show how to perform �structural� inductions
on any recursively dened concept�

����� Inductions on Integers

Suppose we are given a statement S�n�� about an integer n� to prove� One
common approach is to prove two things�

�� The basis� where we show S�i� for a particular integer i� Usually� i � �
or i � �� but there are examples where we want to start at some higher
i� perhaps because the statement S is false for a few small integers�

�� The inductive step� where we assume n � i� where i is the basis integer�
and we show that �if S�n� then S�n� ����

Intuitively� these two parts should convince us that S�n� is true for every
integer n that is equal to or greater than the basis integer i� We can argue as
follows� Suppose S�n� were false for one or more of those integers� Then there
would have to be a smallest value of n� say j� for which S�j� is false� and yet
j � i� Now j could not be i� because we prove in the basis part that S�i� is
true� Thus� j must be greater than i� We now know that j�� � i� and S�j���
is true�

However� we proved in the inductive part that if n � i� then S�n� implies
S�n � ��� Suppose we let n � j � �� Then we know from the inductive step
that S�j � �� implies S�j�� Since we also know S�j � ��� we can conclude S�j��

�� CHAPTER �� AUTOMATA� THE METHODS AND THE MADNESS

We have assumed the negation of what we wanted to prove
 that is� we
assumed S�j� was false for some j � i� In each case� we derived a contradiction�
so we have a �proof by contradiction� that S�n� is true for all n � i�

Unfortunately� there is a subtle logical �aw in the above reasoning� Our
assumption that we can pick the least j � i for which S�j� is false depends on
our believing the principle of induction in the rst place� That is� the only way
to prove that we can nd such a j is to prove it by a method that is essentially
an inductive proof� However� the �proof� discussed above makes good intuitive
sense� and matches our understanding of the real world� Thus� we generally
take as an integral part of our logical reasoning system�

� The Induction Principle� If we prove S�i� and we prove that for all n � i�
S�n� implies S�n� ��� then we may conclude S�n� for all n � i�

The following two examples illustrate the use of the induction principle to prove
theorems about integers�

Theorem ���
 � For all n � ��

nX
i��

i� �
n�n� ����n� ��

�
�����

PROOF� The proof is in two parts� the basis and the inductive step
 we prove
each in turn�

BASIS� For the basis� we pick n � �� It might seem surprising that the theorem
even makes sense for n � �� since the left side of Equation ����� is

P�
i�� when

n � �� However� there is a general principle that when the upper limit of a sum
�� in this case� is less than the lower limit �� here�� the sum is over no terms

and therefore the sum is �� That is�
P�

i�� i
� � ��

The right side of Equation ����� is also �� since ����������������� � ��
Thus� Equation ����� is true when n � ��

INDUCTION� Now� assume n � �� We must prove the inductive step� that
Equation ����� implies the same formula with n � � substituted for n� The
latter formula is

�n��	X
i��

i� �
�n� ����n� �� � �����n� �� � ��

�
�����

We may simplify Equations ����� and ����� by expanding the sums and products
on the right sides� These equations become�

nX
i��

i� � ��n� � �n� � n��� �����

n��X
i��

i� � ��n� � �n� � ��n� ���� �����

���� INDUCTIVE PROOFS ��

We need to prove ����� using ������ since in the induction principle� these are
statements S�n��� and S�n�� respectively� The �trick� is to break the sum to
n� � on the left of ����� into a sum to n plus the �n� ��st term� In that way�
we can replace the sum to n by the left side of ����� and show that ����� is true�
These steps are as follows�

� nX
i��

i�
�
� �n� ��� � ��n� � �n� � ��n� ���� �����

��n� � �n� � n��� � �n� � �n� �� � ��n� � �n� � ��n� ���� �����

The nal verication that ����� is true requires only simple polynomial algebra
on the left side to show it is identical to the right side� �

Example ���� � In the next example� we prove Theorem ��� from Section ������
Recall this theorem states that if x � �� then �x � x�� We gave an informal
proof based on the idea that the ratio x���x shrinks as x grows above �� We
can make the idea precise if we prove the statement �x � x� by induction on
x� starting with a basis of x � �� Note that the statement is actually false for
x � ��

BASIS� If x � �� then �x and x� are both ��� Thus� �� � �� holds�

INDUCTION� Suppose for some x � � that �x � x�� With this statement as
the hypothesis� we need to prove the same statement� with x� � in place of x�
that is� ��x��	 � �x � ���� These are the statements S�x� and S�x � �� in the
induction principle
 the fact that we are using x instead of n as the parameter
should not be of concern
 x or n is just a local variable�

As in Theorem ����� we should rewrite S�x��� so it can make use of S�x��
In this case� we can write ��x��	 as �� �x� Since S�x� tells us that �x � x�� we
can conclude that �x�� � �� �x � �x��

But we need something di�erent
 we need to show that �x�� � �x � ����
One way to prove this statement is to prove that �x� � �x � ��� and then use
the transitivity of � to show �x�� � �x� � �x� ���� In our proof that

�x� � �x � ��� �����

we may use the assumption that x � �� Begin by simplifying ������

x� � �x� � �����

Divide ����� by x� to get�

x � � �
�

x
�����

Since x � �� we know ��x
 ���� Thus� the left side of ����� is at least
�� and the right side is at most ����� We have thus proved the truth of ������

�� CHAPTER �� AUTOMATA� THE METHODS AND THE MADNESS

Integers as Recursively De�ned Concepts

We mentioned that inductive proofs are useful when the subject matter is
recursively dened� However� our rst examples were inductions on inte	
gers� which we do not normally think of as �recursively dened�� However�
there is a natural� recursive denition of when a number is a nonnegative
integer� and this denition does indeed match the way inductions on inte	
gers proceed� from objects dened rst� to those dened later�

BASIS� � is an integer�

INDUCTION� If n is an integer� then so is n� ��

Therefore� Equations ����� and ����� are also true� Equation ����� in turn gives
us �x� � �x� ��� for x � � and lets us prove statement S�x � ��� which we
recall was �x�� � �x� ���� �

����� More General Forms of Integer Inductions

Sometimes an inductive proof is made possible only by using a more general
scheme than the one proposed in Section ������ where we proved a statement S
for one basis value and then proved that �if S�n� then S�n����� Two important
generalizations of this scheme are�

�� We can use several basis cases� That is� we prove S�i�� S�i� ��� � � � � S�j�
for some j � i�

�� In proving S�n� ��� we can use the truth of all the statements

S�i�� S�i� ��� � � � � S�n�

rather than just using S�n�� Moreover� if we have proved basis cases up
to S�j�� then we can assume n � j� rather than just n � i�

The conclusion to be made from this basis and inductive step is that S�n� is
true for all n � i�

Example ���� � The following example will illustrate the potential of both
principles� The statement S�n� we would like to prove is that if n � �� then n
can be written as a sum of ��s and ��s� Notice� incidentally� that � cannot be
written as a sum of ��s and ��s�

BASIS� The basis cases are S���� S���� and S����� The proofs are � � � � ��
� � � � � � �� and �� � � � �� respectively�

���� INDUCTIVE PROOFS ��

INDUCTION� Assume that n � �� and that S���� S���� � � � � S�n� are true� We
must prove S�n��� from these given facts� Our strategy is to subtract � from
n� �� observe that this number must be writable as a sum of ��s and ��s� and
add one more � to the sum to get a way to write n� ��

More formally� observe that n � � � �� so we may assume S�n � ��� That
is� n � � � �a � �b for some integers a and b� Then n � � � � � �a � �b� so
n � � can be written as the sum of a � � ��s and b ��s� That proves S�n � ��
and concludes the inductive step� �

����� Structural Inductions

In automata theory� there are several recursively dened structures about which
we need to prove statements� The familiar notions of trees and expressions
are important examples� Like inductions� all recursive denitions have a basis
case� where one or more elementary structures are dened� and an inductive
step� where more complex structures are dened in terms of previously dened
structures�

Example ��� � Here is the recursive denition of a tree�

BASIS� A single node is a tree� and that node is the root of the tree�

INDUCTION� If T�� T�� � � � � Tk are trees� then we can form a new tree as follows�

�� Begin with a new node N � which is the root of the tree�

�� Add copies of all the trees T�� T�� � � � � Tk�

�� Add edges from node N to the roots of each of the trees T�� T�� � � � � Tk�

Figure ��� shows the inductive construction of a tree with rootN from k smaller
trees� �

T TT

N

1 2 k

Figure ���� Inductive construction of a tree

Example ���� � Here is another recursive denition� This time we dene
expressions using the arithmetic operators � and � with both numbers and
variables allowed as operands�

�� CHAPTER �� AUTOMATA� THE METHODS AND THE MADNESS

Intuition Behind Structural Induction

We can suggest informally why structural induction is a valid proof
method� Imagine the recursive denition establishing� one at a time� that
certain structuresX�� X�� � � �meet the denition� The basis elements come
rst� and the fact that Xi is in the dened set of structures can only de	
pend on the membership in the dened set of structures that precede Xi

on the list� Viewed this way� a structural induction is nothing but an in	
duction on integer n of the statement S�Xn�� This induction may be of
the generalized form discussed in Section ������ with multiple basis cases
and an inductive step that uses all previous instances of the statement�
However� we should remember� as explained in Section ������ that this
intuition is not a formal proof� and in fact we must assume the validity
of this induction principle as we did the validity of the original induction
principle of that section�

BASIS� Any number or letter �i�e�� a variable� is an expression�

INDUCTION� If E and F are expressions� then so are E � F � E F � and �E��

For example� both � and x are expressions by the basis� The inductive step
tells us x � �� �x � ��� and � �x � �� are all expressions� Notice how each of
these expressions depends on the previous ones being expressions� �

When we have a recursive denition� we can prove theorems about it using
the following proof form� which is called structural induction� Let S�X� be a
statement about the structures X that are dened by some particular recursive
denition�

�� As a basis� prove S�X� for the basis structure�s� X �

�� For the inductive step� take a structure X that the recursive deni	
tion says is formed from Y�� Y�� � � � � Yk� Assume that the statements
S�Y��� S�Y��� � � � � S�Yk� hold� and use these to prove S�X��

Our conclusion is that S�X� is true for all X � The next two theorems are
examples of facts that can be proved about trees and expressions�

Theorem ���� � Every tree has one more node than it has edges�

PROOF� The formal statement S�T � we need to prove by structural induction
is� �if T is a tree� and T has n nodes and e edges� then n � e� ���

BASIS� The basis case is when T is a single node� Then n � � and e � �� so
the relationship n � e� � holds�

���� INDUCTIVE PROOFS ��

INDUCTION� Let T be a tree built by the inductive step of the denition�
from root node N and k smaller trees T�� T�� � � � � Tk� We may assume that the
statements S�Ti� hold for i � �� �� � � � � k� That is� let Ti have ni nodes and ei
edges
 then ni � ei � ��

The nodes of T are node N and all the nodes of the Ti�s� There are thus
� � n� � n� � � � � � nk nodes in T � The edges of T are the k edges we added
explicitly in the inductive denition step� plus the edges of the Ti�s� Hence� T
has

k � e� � e� � � � �� ek ������

edges� If we substitute ei � � for ni in the count of the number of nodes of T
we nd that T has

� � �e� � �� � �e� � �� � � � �� �ek � �� ������

nodes� Since there are k of the ���� terms in ������� we can regroup it as�

k � � � e� � e� � � � �� ek ������

This expression is exactly � more than the expression of ������ that was given
for the number of edges of T � Thus� T has one more node than it has edges�
�

Theorem ���� � Every expression has an equal number of left and right paren	
theses�

PROOF� Formally� we prove the statement S�G� about any expression G that
is dened by the recursion of Example ����� the numbers of left and right
parentheses in G are the same�

BASIS� If G is dened by the basis� then G is a number or variable� These
expressions have � left parentheses and � right parentheses� so the numbers are
equal�

INDUCTION� There are three rules whereby expression G may have been con	
structed according to the inductive step in the denition�

�� G � E � F �

�� G � E F �

�� G � �E��

We may assume that S�E� and S�F � are true
 that is� E has the same number
of left and right parentheses� say n of each� and F likewise has the same number
of left and right parentheses� say m of each� Then we can compute the numbers
of left and right parentheses in G for each of the three cases� as follows�

�� CHAPTER �� AUTOMATA� THE METHODS AND THE MADNESS

�� If G � E � F � then G has n � m left parentheses and n � m right
parentheses
 n of each come from E and m of each come from F �

�� If G � E F � the count of parentheses for G is again n�m of each� for
the same reason as in case ����

�� IfG � �E�� then there are n�� left parentheses inG� one left parenthesis
is explicitly shown� and the other n are present in E� Likewise� there are
n� � right parentheses in G
 one is explicit and the other n are in E�

In each of the three cases� we see that the numbers of left and right parentheses
in G are the same� This observation completes the inductive step and completes
the proof� �

����� Mutual Inductions

Sometimes� we cannot prove a single statement by induction� but rather need
to prove a group of statements S��n�� S��n�� � � � � Sk�n� together by induction
on n� Automata theory provides many such situations� In Example ���� we
sample the common situation where we need to explain what an automaton
does by proving a group of statements� one for each state� These statements
tell under what sequences of inputs the automaton gets into each of the states�

Strictly speaking� proving a group of statements is no di�erent from proving
the conjunction �logical AND� of all the statements� For instance� the group
of statements S��n�� S��n�� � � � � Sk�n� could be replaced by the single statement
S��n� AND S��n� AND � � � AND Sk�n�� However� when there are really several inde	
pendent statements to prove� it is generally less confusing to keep the statements
separate and to prove them all in their own parts of the basis and inductive
steps� We call this sort of proof mutual induction� An example will illustrate
the necessary steps for a mutual recursion�

Example ���� � Let us revisit the on�o� switch� which we represented as an
automaton in Example ���� The automaton itself is reproduced as Fig� ����
Since pushing the button switches the state between on and o�� and the switch
starts out in the o� state� we expect that the following statements will together
explain the operation of the switch�

S��n�� The automaton is in state o� after n pushes if and only if n is even�

S��n�� The automaton is in state on after n pushes if and only if n is odd�

We might suppose that S� implies S� and vice	versa� since we know that
a number n cannot be both even and odd� However� what is not always true
about an automaton is that it is in one and only one state� It happens that
the automaton of Fig� ��� is always in exactly one state� but that fact must be
proved as part of the mutual induction�

���� INDUCTIVE PROOFS ��

Push

Push

Start
onoff

Figure ���� Repeat of the automaton of Fig� ���

We give the basis and inductive parts of the proofs of statements S��n� and
S��n� below� The proofs depend on several facts about odd and even integers�
if we add or subtract � from an even integer� we get an odd integer� and if we
add or subtract � from an odd integer we get an even integer�

BASIS� For the basis� we choose n � �� Since there are two statements� each of
which must be proved in both directions �because S� and S� are each �if	and	
only	if� statements�� there are actually four cases to the basis� and four cases
to the induction as well�

�� �S�
 If� Since � is in fact even� we must show that after � pushes� the
automaton of Fig� ��� is in state o�� Since that is the start state� the
automaton is indeed in state o� after � pushes�

�� �S�
 Only	if� The automaton is in state o� after � pushes� so we must
show that � is even� But � is even by denition of �even�� so there is
nothing more to prove�

�� �S�
 If� The hypothesis of the �if� part of S� is that � is odd� Since this
hypothesis H is false� any statement of the form �if H then C� is true� as
we discussed in Section ������ Thus� this part of the basis also holds�

�� �S�
 Only	if� The hypothesis� that the automaton is in state on after �
pushes� is also false� since the only way to get to state on is by following
an arc labeled Push� which requires that the button be pushed at least
once� Since the hypothesis is false� we can again conclude that the if	then
statement is true�

INDUCTION� Now� we assume that S��n� and S��n� are true� and try to prove
S��n� �� and S��n� ��� Again� the proof separates into four parts�

�� �S��n � ��
 If� The hypothesis for this part is that n � � is even� Thus�
n is odd� The �if� part of statement S��n� says that after n pushes� the
automaton is in state on� The arc from on to o� labeled Push tells us
that the �n���st push will cause the automaton to enter state o�� That
completes the proof of the �if� part of S��n� ���

�� CHAPTER �� AUTOMATA� THE METHODS AND THE MADNESS

�� �S��n � ��
 Only	if� The hypothesis is that the automaton is in state o�
after n�� pushes� Inspecting the automaton of Fig� ��� tells us that the
only way to get to state o� after one or more moves is to be in state on and
receive an input Push� Thus� if we are in state o� after n� � pushes� we
must have been in state on after n pushes� Then� we may use the �only	if�
part of statement S��n� to conclude that n is odd� Consequently� n�� is
even� which is the desired conclusion for the only	if portion of S��n� ���

�� �S��n���
 If� This part is essentially the same as part ���� with the roles of
statements S� and S� exchanged� and with the roles of �odd� and �even�
exchanged� The reader should be able to construct this part of the proof
easily�

�� �S��n���
 Only	if� This part is essentially the same as part ���� with the
roles of statements S� and S� exchanged� and with the roles of �odd� and
�even� exchanged�

�

We can abstract from Example ���� the pattern for all mutual inductions�

� Each of the statements must be proved separately in the basis and in the
inductive step�

� If the statements are �if	and	only	if�� then both directions of each state	
ment must be proved� both in the basis and in the induction�

��� The Central Concepts of Automata Theory

In this section we shall introduce the most important denitions of terms that
pervade the theory of automata� These concepts include the �alphabet� �a set
of symbols�� �strings� �a list of symbols from an alphabet�� and �language� �a
set of strings from the same alphabet��

��
�� Alphabets

An alphabet is a nite� nonempty set of symbols� Conventionally� we use the
symbol � for an alphabet� Common alphabets include�

�� � � f�� �g� the binary alphabet�

�� � � fa� b� � � � � zg� the set of all lower	case letters�

�� The set of all ASCII characters� or the set of all printable ASCII charac	
ters�

���� THE CENTRAL CONCEPTS OF AUTOMATA THEORY ��

��
�� Strings

A string �or sometimes word� is a nite sequence of symbols chosen from some
alphabet� For example� ����� is a string from the binary alphabet � � f�� �g�
The string ��� is another string chosen from this alphabet�

The Empty String

The empty string is the string with zero occurrences of symbols� This string�
denoted �� is a string that may be chosen from any alphabet whatsoever�

Length of a String

It is often useful to classify strings by their length� that is� the number of
positions for symbols in the string� For instance� ����� has length �� It is
common to say that the length of a string is �the number of symbols� in the
string
 this statement is colloquially accepted but not strictly correct� Thus�
there are only two symbols� � and �� in the string ������ but there are ve
positions for symbols� and its length is �� However� you should generally expect
that �the number of symbols� can be used when �number of positions� is meant�

The standard notation for the length of a string w is jwj� For example�
j���j � � and j�j � ��

Powers of an Alphabet

If � is an alphabet� we can express the set of all strings of a certain length from
that alphabet by using an exponential notation� We dene �k to be the set of
strings of length k� each of whose symbols is in ��

Example ���� � Note that �� � f�g� regardless of what alphabet � is� That
is� � is the only string whose length is ��

If � � f�� �g� then �� � f�� �g� �� � f��� ��� ��� ��g�

�� � f���� ���� ���� ���� ���� ���� ���� ���g

and so on� Note that there is a slight confusion between � and ��� The former
is an alphabet
 its members � and � are symbols� The latter is a set of strings

its members are the strings � and �� each of which is of length �� We shall not
try to use separate notations for the two sets� relying on context to make it
clear whether f�� �g or similar sets are alphabets or sets of strings� �

The set of all strings over an alphabet � is conventionally denoted ��� For
instance� f�� �g� � f�� �� �� ��� ��� ��� ��� ���� � � �g� Put another way�

�� � �� � �� � �� � � � �

Sometimes� we wish to exclude the empty string from the set of strings� The
set of nonempty strings from alphabet � is denoted ��� Thus� two appropriate
equivalences are�

�� CHAPTER �� AUTOMATA� THE METHODS AND THE MADNESS

Type Convention for Symbols and Strings

Commonly� we shall use lower	case letters at the beginning of the alphabet
�or digits� to denote symbols� and lower	case letters near the end of the
alphabet� typically w� x� y� and z� to denote strings� You should try to get
used to this convention� to help remind you of the types of the elements
being discussed�

� �� � �� � �� � �� � � � ��

� �� � �� � f�g�

Concatenation of Strings

Let x and y be strings� Then xy denotes the concatenation of x and y� that
is� the string formed by making a copy of x and following it by a copy of y�
More precisely� if x is the string composed of i symbols x � a�a� � � � ai and y is
the string composed of j symbols y � b�b� � � � bj � then xy is the string of length
i� j� xy � a�a� � � � aib�b� � � � bj �

Example ���� � Let x � ����� and y � ���� Then xy � �������� and
yx � ��������� For any string w� the equations �w � w� � w hold� That is�
� is the identity for concatenation� since when concatenated with any string it
yields the other string as a result �analogously to the way �� the identity for
addition� can be added to any number x and yields x as a result�� �

��
�� Languages

A set of strings all of which are chosen from some ��� where � is a particular
alphabet� is called a language� If � is an alphabet� and L � ��� then L is a
language over �� Notice that a language over � need not include strings with
all the symbols of �� so once we have established that L is a language over ��
we also know it is a language over any alphabet that is a superset of ��

The choice of the term �language� may seem strange� However� common
languages can be viewed as sets of strings� An example is English� where the
collection of legal English words is a set of strings over the alphabet that consists
of all the letters� Another example is C� or any other programming language�
where the legal programs are a subset of the possible strings that can be formed
from the alphabet of the language� This alphabet is a subset of the ASCII
characters� The exact alphabet may di�er slightly among di�erent programming
languages� but generally includes the upper	 and lower	case letters� the digits�
punctuation� and mathematical symbols�

However� there are also many other languages that appear when we study
automata� Some are abstract examples� such as�

���� THE CENTRAL CONCEPTS OF AUTOMATA THEORY ��

�� The language of all strings consisting of n ��s followed by n ��s� for some
n � �� f�� ��� ����� ������� � � �g�

�� The set of strings of ��s and ��s with an equal number of each�

f�� ��� ��� ����� ����� ����� � � �g

�� The set of binary numbers whose value is a prime�

f��� ��� ���� ���� ����� � � �g

�� �� is a language for any alphabet ��

�� �� the empty language� is a language over any alphabet�

�� f�g� the language consisting of only the empty string� is also a language
over any alphabet� Notice that � �� f�g
 the former has no strings and
the latter has one string�

The only important constraint on what can be a language is that all alphabets
are nite� Thus languages� although they can have an innite number of strings�
are restricted to consist of strings drawn from one xed� nite alphabet�

��
�� Problems

In automata theory� a problem is the question of deciding whether a given string
is a member of some particular language� It turns out� as we shall see� that
anything we more colloquially call a �problem� can be expressed as membership
in a language� More precisely� if � is an alphabet� and L is a language over ��
then the problem L is�

� Given a string w in ��� decide whether or not w is in L�

Example ���
 � The problem of testing primality can be expressed by the
language Lp consisting of all binary strings whose value as a binary number is
a prime� That is� given a string of ��s and ��s� say �yes� if the string is the
binary representation of a prime and say �no� if not� For some strings� this
decision is easy� For instance� ������� cannot be the representation of a prime�
for the simple reason that every integer except � has a binary representation
that begins with �� However� it is less obvious whether the string ����� belongs
to Lp� so any solution to this problem will have to use signicant computational
resources of some kind� time and�or space� for example� �

One potentially unsatisfactory aspect of our denition of �problem� is that
one commonly thinks of problems not as decision questions �is or is not the
following true�� but as requests to compute or transform some input �nd the
best way to do this task�� For instance� the task of the parser in a C compiler

�� CHAPTER �� AUTOMATA� THE METHODS AND THE MADNESS

Set�Formers as a Way to De�ne Languages

It is common to describe a language using a �set	former��

fw j something about wg

This expression is read �the set of words w such that �whatever is said
about w to the right of the vertical bar��� Examples are�

�� fw j w consists of an equal number of ��s and ��s g�

�� fw j w is a binary integer that is prime g�

�� fw j w is a syntactically correct C program g�

It is also common to replace w by some expression with parameters and
describe the strings in the language by stating conditions on the parame	
ters� Here are some examples
 the rst with parameter n� the second with
parameters i and j�

�� f�n�n j n � �g� Read �the set of � to the n � to the n such that n
is greater than or equal to ��� this language consists of the strings
f��� ����� ������� � � �g� Notice that� as with alphabets� we can raise
a single symbol to a power n in order to represent n copies of that
symbol�

�� f�i�j j �
 i
 jg� This language consists of strings with some ��s
�possibly none� followed by at least as many ��s�

can be thought of as a problem in our formal sense� where one is given an ASCII
string and asked to decide whether or not the string is a member of Lc� the set
of valid C programs� However� the parser does more than decide� It produces a
parse tree� entries in a symbol table and perhaps more� Worse� the compiler as
a whole solves the problem of turning a C program into object code for some
machine� which is far from simply answering �yes� or �no� about the validity
of a program�

Nevertheless� the denition of �problems� as languages has stood the test
of time as the appropriate way to deal with the important questions of com	
plexity theory� In this theory� we are interested in proving lower bounds on
the complexity of certain problems� Especially important are techniques for
proving that certain problems cannot be solved in an amount of time that is
less than exponential in the size of their input� It turns out that the yes�no
or language	based version of known problems are just as hard in this sense� as

���� SUMMARY OF CHAPTER � ��

Is It a Language or a Problem�

Languages and problems are really the same thing� Which term we prefer
to use depends on our point of view� When we care only about strings for
their own sake� e�g�� in the set f�n�n j n � �g� then we tend to think of
the set of strings as a language� In the last chapters of this book� we shall
tend to assign �semantics� to the strings� e�g�� think of strings as coding
graphs� logical expressions� or even integers� In those cases� where we care
more about the thing represented by the string than the string itself� we
shall tend to think of a set of strings as a problem�

their �solve this� versions�

That is� if we can prove it is hard to decide whether a given string belongs to
the language LX of valid strings in programming language X � then it stands to
reason that it will not be easier to translate programs in language X to object
code� For if it were easy to generate code� then we could run the translator� and
conclude that the input was a valid member of LX exactly when the translator
succeeded in producing object code� Since the nal step of determining whether
object code has been produced cannot be hard� we can use the fast algorithm
for generating the object code to decide membership in LX e�ciently� We thus
contradict the assumption that testing membership in LX is hard� We have a
proof by contradiction of the statement �if testing membership in LX is hard�
then compiling programs in programming language X is hard��

This technique� showing one problem hard by using its supposed e�cient
algorithm to solve e�ciently another problem that is already known to be hard�
is called a �reduction� of the second problem to the rst� It is an essential tool
in the study of the complexity of problems� and it is facilitated greatly by our
notion that problems are questions about membership in a language� rather
than more general kinds of questions�

��� Summary of Chapter �

✦ Finite Automata� Finite automata involve states and transitions among
states in response to inputs� They are useful for building several di�erent
kinds of software� including the lexical analysis component of a compiler
and systems for verifying the correctness of circuits or protocols� for ex	
ample�

✦ Regular Expressions � These are a structural notation for describing the
same patterns that can be represented by nite automata� They are used
in many common types of software� including tools to search for patterns
in text or in le names� for instance�

�� CHAPTER �� AUTOMATA� THE METHODS AND THE MADNESS

✦ Context�Free Grammars � These are an important notation for describing
the structure of programming languages and related sets of strings
 they
are used to build the parser component of a compiler�

✦ Turing Machines � These are automata that model the power of real com	
puters� They allow us to study decidabilty� the question of what can or
cannot be done by a computer� They also let us distinguish tractable
problems � those that can be solved in polynomial time � from the
intractable problems � those that cannot�

✦ Deductive Proofs � This basic method of proof proceeds by listing state	
ments that are either given to be true� or that follow logically from some
of the previous statements�

✦ Proving If�Then Statements � Many theorems are of the form �if �some	
thing� then �something else��� The statement or statements following the
�if� are the hypothesis� and what follows �then� is the conclusion� Deduc	
tive proofs of if	then statements begin with the hypothesis� and continue
with statements that follow logically from the hypothesis and previous
statements� until the conclusion is proved as one of the statements�

✦ Proving If�And�Only�If Statements � There are other theorems of the form
��something� if and only if �something else��� They are proved by showing
if	then statements in both directions� A similar kind of theorem claims
the equality of the sets described in two di�erent ways
 these are proved
by showing that each of the two sets is contained in the other�

✦ Proving the Contrapositive� Sometimes� it is easier to prove a statement
of the form �if H then C� by proving the equivalent statement� �if not
C then not H �� The latter is called the contrapositive of the former�

✦ Proof by Contradiction� Other times� it is more convenient to prove the
statement �if H then C� by proving �if H and not C then �something
known to be false��� A proof of this type is called proof by contradiction�

✦ Counterexamples � Sometimes we are asked to show that a certain state	
ment is not true� If the statement has one or more parameters� then we
can show it is false as a generality by providing just one counterexam	
ple� that is� one assignment of values to the parameters that makes the
statement false�

✦ Inductive Proofs � A statement that has an integer parameter n can often
be proved by induction on n� We prove the statement is true for the
basis� a nite number of cases for particular values of n� and then prove
the inductive step� that if the statement is true for values up to n� then
it is true for n� ��

��	� GRADIANCE PROBLEMS FOR CHAPTER � ��

✦ Structural Inductions � In some situations� including many in this book�
the theorem to be proved inductively is about some recursively dened
construct� such as trees� We may prove a theorem about the constructed
objects by induction on the number of steps used in its construction� This
type of induction is referred to as structural�

✦ Alphabets � An alphabet is any nite set of symbols�

✦ Strings � A string is a nite	length sequence of symbols�

✦ Languages and Problems � A language is a �possibly innite� set of strings�
all of which choose their symbols from some one alphabet� When the
strings of a language are to be interpreted in some way� the question of
whether a string is in the language is sometimes called a problem�

��� Gradiance Problems for Chapter �

The following is a sample of problems that are available on	line through the
Gradiance system at www�gradiance�com�pearson� Each of these problems
is worked like conventional homework� The Gradiance system gives you four
choices that sample your knowledge of the solution� If you make the wrong
choice� you are given a hint or advice and encouraged to try the same problem
again�

Problem ��� � Find in the list below the expression that is the contrapositive of
A AND �NOT B� � C OR �NOT D�� Note� the hypothesis and conclusion
of the choices in the list below may have some simple logical rules applied to
them� in order to simplify the expressions�

Problem ��� � To prove A AND �NOT B� � C OR �NOT D� by contra	
diction� which of the statements below would we prove� Note� each of the
choices is simplied by pushing NOT�s down until they apply only to atomic
statements A through D�

Problem ��� � Suppose we want to prove the statement S�n�� �If n � �� the
sum of the integers � through n is �n � ���n � ����� by induction on n� To
prove the inductive step� we can make use of the fact that

� � � � � � � � �� �n� �� � �� � � � � � � � �� n� � �n� ��

Find� in the list below an equality that we may prove to conclude the inductive
part�

Problem ��� � The length of the string X �shown on	line by the Gradiance
system from a stock of choices� is�

Problem ��� � What is the concatenation of X and Y � �strings shown on	line
by the Gradiance system from a stock of choices�

�� CHAPTER �� AUTOMATA� THE METHODS AND THE MADNESS

Problem ��
 � The binary string X �shown on	line by the Gradiance system�
is a member of which of the following problems� Remember� a �problem� is a
language whose strings represent the cases of a problem that have the answer
�yes�� In this question� you should assume that all languages are sets of binary
strings interpreted as base	� integers� The exception is the problem of nding
palindromes� which are strings that are identical when reversed� like ��������
regardless of their numerical value�

��	 References for Chapter �

For extended coverage of the material of this chapter� including mathematical
concepts underlying Computer Science� we recommend ����

�� A� V� Aho and J� D� Ullman� Foundations of Computer Science� Computer
Science Press� New York� �����

	1.Automata: The Methods and the Madness

