
1

C H A P T E R 1

Finite-StateMachines
This is a book aboutweightedfinite-state transducers (WFSTs) and their use in text generation
and processing. The WFST formalism synthesizes decades of research into graphs, automata,
and formal languages, including lines of research blossoming long before the era of ubiquitous
digital computing.

The history of finite-state technology stretches back almost a century. Some key theorems
and algorithms were discovered—and rediscovered—long before computers became powerful
enough to exploit them (see chapter 5 for an example) and in some cases decades have elapsed
between discovery and software implementation. Some essential algorithms were not gener-
alized until the 1990s or later, as part of efforts—particularly at AT&T Bell Labs, and later at
Google—to use WFSTs for scalable automatic speech recognition and text-to-speech synthesis.

A few key notions connect these disparate areas of research and application. The first
is that of the state machine, a sort of abstract mathematical model of computation of which
weighted finite-state transducers are a special case. Such models, first formalized by Turing
(1936), are not only the foundation of the theory of computation—quite literally, the study of
what it means to compute—but also inspired the creation of ENIAC, the first general-purpose
digital computer, a decade later. The second is that of formal languages. While the origins of
formal language theory can be traced at least as far back as Thue (1914), perhaps the most im-
portant contribution is a study by Kleene (1956) first circulated in 1951. Kleene’s study springs
from an obscure goal: the formal characterization of the expressive capacity of “nerve nets”, a
primitive form of artificial neural network proposed by McCulloch and Pitts (1943) a few years
prior. To do so, Kleene introduces a family of formal languages called the “regular languages”
and established strong connections between the algebraic characterizations of formal language
theory and the automata (i.e., state machine) characterizations used by Turing and others. This
body of work was an enormous inspiration in the development of modern linguistic theory—
generative grammar in particular (Chomsky 1963)—and also contributed to the theory of com-
pilers, computer programs which translate other computer programs. This chapter traces these
two threads—automata and formal languages—and their relationship.

All of this effort, by some of the greatest scientific minds of the early 20th century,
could easily have come to naught had the objects of study—regular languages and finite-state
automata—turned out to have limited real-world relevance. But it turns out that these exhibit
tantalizing similarities to phenomena found in natural—that is, human—languages, a fact which
has only become clearer with time. A few examples should suffice. It is now believed that vir-

2 1. FINITE-STATEMACHINES
tually all patterns that define the phonology—or the grapheme-to-phoneme rules—of natural
languages can be expressed as relations between regular languages. The hypothesis space of au-
tomatic speech recognizers, consisting of a probabilistic mapping between acoustic observations
and word sequences, can also be compactly expressed as a relation between two regular lan-
guages. Finally, many text generation and processing problems can be framed as transductions
between regular languages. Thanks to Kleene and others, it is known that these types of relations
can be encoded by state machines, and subsequent work introduces techniques for combining,
applying, optimizing, and searching these machines.

1.1 STATEMACHINES
A state machine is hardware or software whose behavior can be described solely in terms of a
set of states and arcs, which represent transitions between those states. In this formalism, states
roughly correspond to “memory” and arcs to “operations” or “computations”. State machines are
examples of what computer scientists call directed graphs.1 These are “directed” in the sense
that the existence of an arc from state q to state r does not imply an arc from r to q. A finite-
state machine is merely a state machine with a finite, predetermined set of states and labeled
arcs.

One familiar example of a state machine—encoded in hardware, rather than software—is
the old-fashioned gumball machine (Figure 1.1). Such machines can be in exactly one of two
states at a time, and each state is associated with actions such as

• turning the knob,

• inserting a coin, or

• emitting a gumball.

At one state, arbitrarily called state 0, it is possible to turn the knob, but this has no effect on
the behavior of the machine. If, on the other hand, one inserts the appropriate coin(s), that
transitions the machine to a state 1, at which point a subsequent turn of the knob will cause the
machine to emit a gumball and return to state 0. This of course is an idealization of real-world
gumball machines, which may experience mechanical failure or run out of gumballs. Without a
shop-keeper around to service the machine, model and reality necessarily diverge.

The description of the gumball machine above is given a graphical representation in Fig-
ure 1.2. By convention, the bold outline of state 0 indicates that it has been—arbitrarily—chosen
as the start or initial state; the double-struck outline indicates that it is also a final state; these
notions will be formalized shortly. Valid transitions between states are indicated with arrows.
These arcs are labeled with pairs of actions. Here, the inputs are user actions and the outputs
are gumballs. The Greek letter � (“epsilon”) is used to represent the absence of an input and/or

1The primary difference is terminological; what are here called states and arcs are known in other communities as “ver-
tices” and “edges”, respectively.

1.1. STATEMACHINES 3

Figure 1.1: An old-fashioned gumball machine. (Image credit: Dario Lo Presti/Shutterstock.
com)

insert-coin:ǫ

turn-knob:emit-gumball

turn-knob:ǫ

10

Figure 1.2: An old-fashioned gumball machine schematized as a state machine.

output for a given arc. Because, as mentioned, turning the knob at state 0 produces no output
and does not change the state of the machine, there is a self-arc at state 0 labeled turn-knob:�.
On the other hand, inserting a coin at state 0 produces no observable output, but it transitions
the machine to state 1. At this state a knob turn by the user causes the machine to emit a gumball
and return to state 0.

Shutterstock.com
Shutterstock.com

4 1. FINITE-STATEMACHINES
We now provide definitions for various types of finite-state machine, after reviewing some

formal preliminaries.

1.2 FORMALPRELIMINARIES

This section provides a brief introduction to set theory and related topics. Those readers already
familiar with sets, relations, functions, strings, and languages are welcome to skip to section 1.3.

1.2.1 SETS
Sets are abstract, unordered collections of distinct objects. They are an abstract, purely logical
notion, and their definition does not presuppose any particular method of representing them in
hardware or software; they are unordered in the sense that there is no natural ordering among
the elements ormembers of any set. By convention, sets are represented using uppercase Greek
or Italic letters, and elements of sets are denoted using lowercase Italic letters. Set membership
is indicated using the 2 symbol, e.g., x 2 X is read “x is a member of X”. Non-membership is
written using the … symbol, e.g., x … X is read “x is not a member of X”.

Members of a set can be any type of object, including other sets. There are several ways
to specify the members of a set. First, for finite sets, one can simply list the elements in the
set enclosed in curly braces, a representation called extensional or list notation. For instance,
f2; 3; 5; 7g is the finite set of prime numbers less than 10. An alternative notation, and the only
one which can be used to denote infinite sets, uses a predicate such that if some element satis-
fies the predicate, that element is a member of a set; this is known as intensional, predicate,
set-builder, or set-former notation. For instance, one might indicate the infinite set of prime
numbers using the notation fx j prime.x/g. Finally, special notation is used for the empty set,
the set with no elements: it is written ;. The cardinality of a set X , written jX j, is the number
of distinct elements in the set.

A set X is said to be a subset of another set Y if every element in X is also a member of
Y . This property is written using the � operator, e.g., X � Y is read “X is a subset of Y ”. X is
a proper subset of Y (X � Y) if and only if X is a subset of Y and X ¤ Y .

There are various logical operations over sets. Given two sets X and Y , their intersection
X \ Y is the set that contains all elements which aremembers of both X and Y : that is, X \ Y D

fz j z 2 X ^ z 2 Y g where ^ represents logical AND. Given two sets X and Y , their union
X [Y is the set that contains all elements which are members of X , Y , or both: that is, X [Y D

fz j z 2 X _ z 2 Y g where _ represents logical OR. Finally, their difference X � Y is the set
that contains all elements which are members of X but not of Y : that is, X � Y D fz j z 2

X ^ z … Y g.

1.2. FORMALPRELIMINARIES 5

1.2.2 RELATIONSANDFUNCTIONS
A pair or two-tuple is a sequence of two elements, e.g., .a; b/ is the pair consisting of a then b.
This is used to define an operation over sets known as the cross-product or Cartesian product.
Given two sets X and Y , their cross-product X � Y is the set containing all ordered pairs .x; y/

where x is an element of X and Y is an element of Y .That is, X � Y D f.x; y/ j x 2 X ^ y 2 Y g.
A relation—specifically, a binary or two-way relation—over sets X and Y is a subset of

the cross-product X � Y . In this book, relations are indicated using lowercase Greek letters, and
the domain—set of inputs—and range (or more properly, the codomain)—the set of outputs—
are usually provided upon first definition. For instance, the expression
 � X � Y indicate that

 is a relation with domain X and range Y . Relations represent mappings between elements
of the domain and elements of the range; for instance, the “less than” relation can be written
� � R �R D f.x; y/ j x < yg where R is the set of real numbers.

A function is a relation for which every element of the domain is associated with exactly
one element of the range. The “less than” relation above is not a function because, for example,
there are an infinitude of real numbers that are less than any other real number. However, the
“successor” relation � � N �N D f.x; x C 1/ j x 2 Ng, where N is the set of natural numbers,
is a function, because each natural number has exactly one successor.

Three-, four-, and five-way relations, and so on, are all well-defined, though there is no
such generalization for functions, since n-way relations where n > 2 lack well-defined domain
and range. However, one can redefine any n-way relation into a two-way relation by grouping
the various sets into domain and range; for instance, a four-way relation over A � B � C �D

can be redefined as a two-way relation (and possibly, a function) with domain A � B and range
C �D. Such a relation might be defined as a subset of A � B ! C �D, with the arrow used
to indicate the partition into domain and range.

The application of an input argument to a relation or function can be indicated using
square brackets. For instance, given the successor function � , then �Œ3� D f4g because .3; 4/ 2 � .

Given a relation
 � X � Y and x 2 X ,
Œx� # indicates that
 is well defined at x and

Œx� " indicates that
 is undefined at x. A relation or function is said to be total if it is defined
for all values of the domain. The less-than relation and successor functions, for example, are both
total.

1.2.3 STRINGSANDLANGUAGES
Many of the sets defined below contain a type of element known as a string. Let † be a set of
symbols called the alphabet. A string is a finite ordered sequence of zero or more elements from
the alphabet. By convention, the empty string is indicated by �. Note that � is not a member of
†.

The concatenation of two strings is the string produced by joining the two strings end-
to-end. The concatenation of two strings x; y is written xy. Note that � is the concatenative
identity, thus x� D �x D x for all x.

6 1. FINITE-STATEMACHINES

A set of zero or more strings is known as a language.2 Since languages are sets, opera-
tions such as intersection, union, and difference are well defined. In addition, concatenation can
also be generalized to languages, i.e., given languages X and Y , XY D fxy j x 2 X ^ y 2 Y g.
One other operation over languages is closure. First, the notation Xn, where n is a natu-
ral number, denotes a language consisting of n self-concatenations of X ; e.g., X0 D f�g and
X4 D XXXX . The (concatenative) closure of a language X is an infinite union of zero or
more concatenations of X with itself. It is notated with a superscripted asterisk, e.g., X� DS

i�0 X i D f�g [X [XX [XXX [: : :. One variant of closure, indicated with a superscript
plus-sign, excludes the empty string, e.g., XC D

S
i>0 X i D X [XX [XXX [: : :, or equiv-

alently, XC D XX�. These two variants of closure are sometimes referred to as Kleene star and
Kleene plus, respectively. Finally, a superscripted question mark is used to indicate optionality,
e.g., X ‹ D f�g [X .

1.3 ACCEPTORSANDREGULARLANGUAGES
Finite acceptors are the simplest form of finite automata, in some ways simpler than the model of
a gumball machine presented above. They represent a family of string sets known as the regular
languages.

1.3.1 FINITE-STATEACCEPTORS
A finite-state acceptor (FSA) is a five-tuple consisting of

1. a finite set of states Q,

2. a start or initial state s 2 Q,

3. a set of final (or accepting) states F � Q,

4. an alphabet †, and

5. a transition relation ı � Q � .† [f�g/ �Q.

Note that as formalized here, there is only one start state but there may be many final states;
also note that the start state may itself be a final state.3

An FSA is said to accept a string if there exists a path from the initial state to some final
state, and the labels of the arcs traversed by that path correspond to the string in question. The
set of all strings so accepted by an FSA is called its language. More formally, given two states
q; r 2 Q and a symbol z 2 † [f�g, .q; z; r/ 2 ı implies that there is an arc from state q to state
r with label z. A path through a finite acceptor is a pair of

2This is not intended to supplant common-sense notions of what a language is; it is merely a term of art.
3One could allow for arbitrarily many start states, but given any finite automaton with multiple start states S � Q, it is

trivial to construct an equivalent automaton with a single “superinitial” start state. Alternatively, one could limit the formalism
to a single “superfinal” final state f 2 Q.

1.3. ACCEPTORSANDREGULARLANGUAGES 7
1. a state sequence q1; q2; : : : ; qn 2 Qn and a

2. a string z1; z2; : : : ; zn 2 .† [f�g/n,

subject to the constraint that 8i 2 Œ1; n� W .qi ; zi ; qiC1/ 2 ı; that is, there exists an arc from qi to
qiC1 labeled zi . A path that visits a state more than one time—i.e., if its state sequence contains
the start state s or any repeated states—has a cycle. Automata are cyclic if any of their paths
contain cycles and acyclic otherwise.

A path is said to be complete if

1. .s; z1; q1/ 2 ı and

2. qn 2 F .

That is, a complete path must also begin with an arc from the initial state s to q1 labeled z1 and
terminate at a final state. Henceforth, without loss of generality, �-labels are omitted from path
strings because � signals the absence of a symbol and therefore can be ignored. Indeed, for every
FSA, there is an equivalent �-free FSA, i.e., an FSA which accepts the same language but which
has no �-arcs, computed with the �-removal algorithm (Mohri 2002a). Then, an FSA accepts
or recognizes a string z 2 †� if there exists a complete path with string z. The set of strings
accepted by an FSA is called its language.

1.3.2 REGULARLANGUAGES
The family of languages recognized by finite acceptors are the regular languages. Kleene (1956)
provides an algebraic characterization. Given an alphabet †:

1. The empty language ; is a regular language.

2. The empty string language f�g is a regular language.

3. If s 2 †, then the singleton language fsg is a regular language.

4. If X is a regular language, then its closure X� is a regular language.

5. If X; Y are regular languages, then:

• their concatenation XY is a regular language, and
• their union X [Y is a regular language.

6. Languages which cannot be derived as above are not regular languages.

Kleene (ibid.) also shows that every finite acceptor corresponds to a regular language and that
every regular language corresponds to a finite acceptor. This result, known as Kleene’s theorem,
implies that operations over languages such as closure, concatenation, and union are defined not
only for languages but also for finite acceptors.

8 1. FINITE-STATEMACHINES

0
a

a

0
a

c

b
1

1

3

2

Figure 1.3: Finite acceptors for the languages fagC (left) and fag.fbg [fcg/ (right).

Two examples of FSAs and their corresponding regular languages are shown in Figure 1.3
as state transition diagrams. The left pane contains an FSA defined by Q D f0; 1g, s D 0,
F D f1g, † D fag, and ı D f.0; a; 1/; .1; a; 1/g, which accepts the infinite language fagC D
fa; aa; aaa; : : :g.The right pane shows an FSAwhich accepts the finite language fag.fbg [fcg/ D
fab; acg. The reader is encouraged to study these acceptors and manually trace the generation of
a few strings.

1.3.3 REGULAREXPRESSIONS
Regular expressions are a declarative notational scheme used to characterize the regular lan-
guages (Hopcroft et al. 2008: ch. 3). One can convert any finite acceptor to a regular expres-
sion, and any regular expression to a finite automaton. However, implementations of regular ex-
pressions in many programming languages—for instance, the implementation used in Python’s
built-in re module—include additional features which cannot be encoded using regular lan-
guages or finite-state acceptors.

1.4 TRANSDUCERSANDRATIONALRELATIONS
Finite transducers are a generalization of finite acceptors. Rather than modeling languages, they
model rational relations between pairs of languages, and as such they can be used to encode
string-to-string transductions.4

1.4.1 FINITE-STATETRANSDUCERS
A finite-state transducer (FST) is a six-tuple consisting of

1. a finite set of states Q,

2. a start state s 2 Q,

3. a set of final states F � Q,

4It is possible to generalize rational relations, and finite-state transducers, to relations between sets of more than two
languages. This generalization is not discussed here as it is only rarely employed in computational linguistics, but see, e.g., Kay
1987, Kiraz 2001, or Hulden 2017.

1.4. TRANSDUCERSANDRATIONALRELATIONS 9
4. an input alphabet †,

5. an output alphabet ˆ, and

6. a transition relation ı � Q � .† [f�g/ � .ˆ [f�g/ �Q.

The first three elements are also used in the definition of FSAs; the latter three are novel. The
key distinction between FSAs and FSTs is that in the latter case, arcs bear pairs of labels, one
drawn from an input alphabet and the other from a (possibly disjoint) output alphabet. A path
through a finite transducer is a triple consisting of

1. a state sequence q1; q2; : : : ; qn 2 Qn,

2. an input string x1; x2; : : : ; xn 2 .† [f�g/n, and

3. an output string y1; y2; : : : ; yn 2 .ˆ [f�g/n,

subject to the constraint that 8i 2 Œ1; n� W .qi ; xi ; yi ; qiC1/ 2 ı. A complete path is a path where

1. .s; x1; y1; q1/ 2 ı and

2. qn 2 F .

That is, a complete path must also begin with a transition from the initial state s to qi with input
label xi and output label yi and halt in a final state. Without loss of generality, and once again
ignoring the presence of �, the domain †� and range ˆ� of an FST are both themselves regular
languages, and the FST itself can be interpreted as a relation, a subset of the cross-product
†� �ˆ�. Then, an FST transduces or maps from x 2 †� to y 2 ˆ� so long as a complete
path with input string x and output string y exists. However, unlike FSAs, not all FSTs have
an equivalent �-free form. For example, consider an FST mapping from two-character U.S.
state abbreviations (e.g., OH) to state names (Ohio); a fragment of such an FST is shown in
Figure 1.4. Here, arcs with � input labels are necessary to allow input strings which are shorter
than the corresponding output strings. Note also that the �-removal algorithm mentioned in
subsection 1.3.1 removes �-arcs—those which have � as both input and output labels—not �-
labels in general.

1.4.2 RATIONALRELATIONS
The family of string relations that can be encoded as a finite-state transducer are the ratio-
nal relations. Like regular languages, closure, concatenation, and union are all well defined for
rational relations. The rational relations are closed under these operations, meaning that the clo-
sure of a rational relation, or the concatenation or union of two or more rational relations, are
also rational relations. However, there are other operations, such as difference, under which the
regular languages are closed but the rational relations are not.

10 1. FINITE-STATEMACHINES

I:I
E:a

H:h

R:r

T:t

A:o
ǫ:w

ǫ:i

ǫ:i

ǫ:e

ǫ:a

ǫ:n

ǫ:e

ǫ:o

ǫ:g ǫ:o

ǫ:h

ǫ:n

ǫ:a

M:M

O:O

U:U

0

15 16
17

11 12 13 14

4 9 10

5 6 7 8
1

2 3

18

Figure 1.4: Fragment of a FST mapping from state abbreviations to state names.

Rational relations are closely related to, but distinct from, regular expression substitu-
tions (e.g., as performed by Python’s re.sub function).5 On one dimension, regular expression
substitutions are less expressive than rational relations, because the former permitmany-to-many
(rather than merely one-to-one and many-to-one) transductions, whereas the pattern matched
by a re.sub is an arbitrary regular language, the substitution must be a single string. Neither
finite state transducers nor the rational relations are restricted in this fashion. At the same time,
re.sub implements other mechanisms that make it more expressive than rational relations.

1.5 WEIGHTEDACCEPTORSANDLANGUAGES
The above formalisms also permit an extension in which acceptors and transducers—and lan-
guages and relations—are generalized by attaching weights to states and arcs. These weights can
represent virtually any set so long as the set and associated operations obey certain constraints
decribed below. Language models, probability distributions over strings, can be compactly en-
coded as weighted acceptors (e.g., Allauzen et al. 2003, 2005, Roark et al. 2012); hiddenMarkov
models can be encoded as weighted transducers (Roche and Schabes 1995) as can sequential lin-
earmodels (Wu et al. 2014) and decoder graphs for automatic speech recognition engines (e.g.,
Mohri 1997, Mohri et al. 2002). Below, semirings are defined and exemplified and then used
to generalize earlier definitions of automata, languages, and relations.

1.5.1 MONOIDSANDSEMIRINGS
Weighted automata algorithms are defined with respect to an algebraic system known as a
semiring (Kuich and Salomaa 1986). It is first necessary to define a related notion, monoids.

5https://docs.python.org/3/library/re.html#re.sub

https://docs.python.org/3/library/re.html#re.sub

1.5. WEIGHTEDACCEPTORSANDLANGUAGES 11
A monoid is an ordered pair .K; �/ where K is a set and � is a binary operator over K with the
properties of

1. closure: 8a; b 2 K W a � b 2 K,

2. associativity: 8a; b; c 2 K W .a � b/ � c D a � .b � c/, and

3. identity: 9e 2 K W e � a D a � e D a.

A monoid is said to be commutative if 8a; b 2 K W a � b D b � a. Then, a semiring is then a
five-tuple .K;˚;˝; N0; N1/ such that

1. the pair .K;˚/ form a commutative monoid with identity element N0,

2. the pair .K;˝/ form a monoid with identity element N1,

3. 8a; b; c 2 K W a˝ .b ˚ c/ D .a˝ b/˚ .a˝ c/, and

4. 8a 2 K W a˝ N0 D N0˝ a D N0.

These constraints require that ˚ is commutative, that N0 is the additive identity, that N1 is the
multiplicative identity, that ˝ distributes over ˚, and that N0 is the multiplicative annihilator
(i.e., that any weight multiplied with N0 is N0). Some common semirings are shown in Table 1.1.
The Boolean semiring consists of true (1) and false (0) values and logical OR and AND op-
erators. The probability semiring ranges over positive real numbers RC and employs the ex-
pected C and � arithmetic operations for ˚ and ˝.6 The log semiring is the projection of
the probability semiring onto the log domain.7 The log semiring uses the logarithmic identity
ln.xy/ D ln x C ln y to replace multiplication with addition in the log domain; this helps to
avoid arithmetic underflow when weight computations are performed with floating-point num-
bers. The definition of addition in this semiring is somewhat more complex: ˚ D ˚log where
a˚log b D � ln.e�a C e�b/. Finally, the tropical semiring is identical to the log semiring ex-
cept that ˚ D min.8

A semiring is said to exhibit the path property (or to be a path semiring) if for all a; b 2

K W a˚ b 2 fa; bg. The tropical semiring has this property—the minimum of any two numbers
must be one of those two numbers—as does the Boolean semiring. Non-path semirings such
as the probability semiring and log semirings define ˚ in a way consistent with common-sense
arithmetic notions, making them suitable for applications that involve counting. One example
of this is the expectation maximization algorithm, commonly used to learn free parameters of
speech models. In contrast, path semirings are used for decoding because the path property is
required to efficiently compute the shortest path(s) through weighted automata (section 4.3).

6For probabilities, only numbers between 0 and 1 inclusive make sense, but numbers in the range .1; C1� serve as
inverse elements.

7The OpenFst library uses the natural logarithm, specifically.
8The tropical semiring is named in tribute to the late mathematician Imre Simon of the University of São Paulo. We note

that São Paulo is just south of the Tropic of Capricorn, so “subtropical” would have been more apt.

12 1. FINITE-STATEMACHINES

Table 1.1: Some commonly used semirings for finite-state applications; R and RC denote the
real, and positive real, numbers, respectively.

© − 0 1

Boolean {0, 1} _ ^ 0 1

Probability + + × 0 1

Log [{±∞} ©log + +∞ 0

Tropical [{±∞} min + +∞ 0

1.5.2 WEIGHTEDFINITEACCEPTORS
A weighted finite-state acceptor (WFSA) is an FSA in which weights are associated with arcs
and states. It is defined by a six-tuple consisting of

1. a finite set of states Q,

2. a start state s 2 Q,

3. a semiring .K;˚;˝; N0; N1/,

4. a final weight function ! � Q �K,

5. an alphabet †, and

6. a transition relation ı � Q � .† [f�g/ �K �Q.

Three modifications have been made with respect to the earlier definition of FSAs in subsec-
tion 1.3.1 above. First, WFSAs are defined with respect to a particular semiring. Second, in
place of the finite state set F there is a function ! which gives the final weight for each state.
By convention, this is assumed to be a total function and a state q 2 Q is said to be non-final if
!.q/ D N0.9 Third, the transition relation ı has been extended to include weights. A path through
a weighted finite acceptor is a triple of

1. a state sequence q1; q2; : : : ; qn 2 Qn,

2. a string z1; z2; : : : ; zn 2 .† [f�g/n, and

3. a weight sequence k1; k2; : : : ; kn 2 Kn

subject to the constraint that 8i 2 Œ1; n� W .qi ; zi ; ki ; qiC1/ 2 ı. This constraint holds that there
exists an arc from qi to qiC1 that has the label zi and weight ki . A path is complete if

9Alternatively, one could define ! as a partial function in which !Œq� # if and only if state q is final.

1.6. WEIGHTEDTRANSDUCERSANDRELATIONS 13

0
a/1

a/1

c/2

b/3

1/2

c/2

3/4

2/3

Figure 1.5: Weighted finite acceptor over the language fagC.fbg [fcg�/.

1. .s; z1; k1; q1/ 2 ı and

2. !Œqn� ¤ N0.

That is, a complete path must also begin with an arc from the initial state s to q1 with label z1

and weight k1 and halt in a final state, i.e., a state with a non-N0 final weight. Once again ignoring
�-labels, a WFSA accepts a string z 2 †� with weight

nO
iD1

ki

!
˝ !Œqn� D k1 ˝ k2 ˝ : : :˝ kn ˝ !Œqn�;

if there exists a complete path with string z and weight sequence k1; k2; : : : ; kn. Note that the
pathweight, the weight associated with a path, is given by the˝-product of the weight sequence
and the final weight of the final state in the path.

An example WFSA is shown in Figure 1.5; weights are separated from arc and/or state
labels by a forward slash. This WFSA accepts the string aacc, for example, with weight 1˝ 1˝

2˝ 2˝ 4, equal to 10 in the log and tropical semirings.

1.5.3 WEIGHTEDREGULARLANGUAGES
There are two roughly equivalent ways to define the weighted regular languages expressed by
weighted finite acceptors. Under one definition, a weighted language is a partial relation over
†� �K; that is, it assigns weights to those strings in its language. However, one can alternatively
define weighted languages as a total relation with N0 used as the weight for strings not accepted
under the previous definition. This eliminates the distinction between those strings not accepted
by the language and those accepted with weight N0.

1.6 WEIGHTEDTRANSDUCERSANDRELATIONS
Finite transducers and relations can also be extended to support weights.

14 1. FINITE-STATEMACHINES

1.6.1 WEIGHTEDFINITETRANSDUCERS
The definition of a weighted finite-state transducer (WFST) should be obvious from the pre-
ceding discussion, but is provided for completeness. A WFST is a seven-tuple consisting of

1. a finite set of states Q,

2. a start state s 2 Q,

3. a semiring .K;˚;˝; N0; N1/,

4. a final weight function ! � Q �K,

5. an input alphabet †,

6. an output alphabet ˆ, and

7. a transition relation ı � Q � .† [f�g/ � .ˆ [f�g/ �K �Q.

Paths through a WFST are then four-tuples consisting of

1. a state sequence q1; q2; : : : qn 2 Qn,

2. a input string x1; x2; : : : ; xn 2 .† [f�g/n,

3. a output string y1; y2; : : : ; yn 2 .ˆ [f�g/n, and

4. a weight sequence k1; k1; : : : ; kn 2 Kn

subject to the constraint that 8i 2 Œ1; n� W .q1; xi ; yi ; ki ; qiC1/ 2 ı. A complete path is a path
where

1. .s; x1; y1; k1; q1/ 2 ı and

2. !Œqn� ¤ N0.

That is, a complete path must also begin with a transition from the initial state s to q1 with
input label x1, output label y1, and weight k1, and halt in a final state. Once again, ignoring the
presence of �-labels in the input and output strings, a WFST transduces or maps from x 2 †�

to y 2 ˆ� with weight k 2 K so long as a complete path with path weight k, input string x, and
output string y exists.

1.6.2 WEIGHTEDRATIONALRELATIONS
Each WFST corresponds to a weighted rational relation, a three-way partial relation over
†� �ˆ� �K, but in practice, such relations are often reinterpreted as two-way partial rela-
tions over †� ! ˆ� �K; that is, for a given input string, they yield pairs of an output string
and an associated path weight. Weighted relations can alternatively be defined as total relations
similarly to the alternative definition of weighted languages given in subsection 1.5.3.

1.6. WEIGHTEDTRANSDUCERSANDRELATIONS 15

FURTHERREADING
Partee et al. (1993: ch. 1–3) give a gentle introduction to sets, pairs, relations, functions, and
strings.

Hopcroft et al. (2008: ch. 2) formalizes finite acceptors, though they eschew both trans-
ducers and weights.

Comparable formalizations of WFSTs are given by Roark and Sproat (2007: ch. 1)
and Mohri (2009).

Hopcroft et al. (2008: ch. 3) formalize connections between finite acceptors, regular lan-
guages, and regular expressions. Jurafsky and Martin (2009: ch. 2) and Eisenstein (2019: ch. 9)
briefly discuss these connections.

Hopcroft et al. (2008: ch. 5–7) and Allauzen and Riley (2012) present an extension of
finite automata known as pushdownautomata, corresponding to the family of formal languages
known as context-free grammars (Chomsky 1963).

	Finite-State Machines
	State Machines
	Formal Preliminaries
	Sets
	Relations and Functions
	Strings and Languages

	Acceptors and Regular Languages
	Finite-State Acceptors
	Regular Languages
	Regular Expressions

	Transducers and Rational Relations
	Finite-State Transducers
	Rational Relations

	Weighted Acceptors and Languages
	Monoids and Semirings
	Weighted Finite Acceptors
	Weighted Regular Languages

	Weighted Transducers and Relations
	Weighted Finite Transducers
	Weighted Rational Relations

