10 the State Tattern

*
+ The State of Things *

T thought things in Objectville
were going to be so easy, but now
every time I turn around there's
another change request coming in.
I'm to the breaking pointl Oh, maybe
T should have been going to Betty's
Wednesday night patterns group all
along. I'm in such a statel

A little known fact: the Strategy and State Patterns were twins
separated at birth. As you know, the Strategy Pattern went on to create a wildly
successful business around interchangeable algorithms. State, however, took the perhaps
more noble path of helping objects to control their behavior by changing their internal
state. He's often overheard telling his object clients, “Just repeat after me: I'm good

enough, I'm smart enough, and doggonit...”

this is a new chapter 385

Download at WoweBook.Com

meet mighty gumball

va
Jaw Breakers

Java toasters are so ‘90s. Today people are building Java into
real devices, like gumball machines. That’s right, gumball
machines have gone high tech; the major manufacturers have

found that by putting CPUs into their machines, they can that's Eheir skovy — we
increase sales, monitor inventory over the network and measure Ak least sk oot bored with the
. \>
customer satisfaction more accurately. o« think T;:;fd?s Lethnolody and needed
tivtd W 1008
ke theiv)
. : way to ™3
But these manufacturers are gumball machine experts, not ko find 2 ¥

software dCVCIOpeI‘S, and they’ve asked for your help: movet extiting:

/ think the o hir

32:;5 Vf/::’cv:l 3\1\7‘::5 \Ic:: tan im\?lcz\:n{: this in Java tor us. W

™ dding movre behavior in the -

Mlglﬂ:}' Gumball, g {')?Z ::Siagn a‘:%\c%ib\c and main{:amablc as ?ossﬁ;

Where the Gumball Machine

is Never Half Empty — Mighty Qumball Engineers

e

386 Chapter 10

Download at WoweBook.Com

mball mathine tontroller needs to

future, so \{ou need to keep

the state pattern

Cubicle Conversation

Let's take a look
at this diagram and see

what the Mighty Gumball
guys want...

Anne: This diagram looks like a state diagram.
Joe: Right, each of those circles is a state...
Anne: ... and each of the arrows is a state transition.

Frank: Slow down, you two, it’s been too long since I studied state diagrams.
Can you remind me what they’re all about?

Anne: Sure, Frank. Look at the circles; those are states. “No Quarter” is
y } probably the starting state for the gumball machine because it’s just sitting
C - . | . |

Joe Frank configurations of the machine that behave in a certain way and need some
action to take them to another state.

there waiting for you to put your quarter in. All states are just different

Joe: Right. See, to go to another state, you need to do something like put a quarter in the machine. See the arrow
from “No Quarter” to “Has Quarter?”

Frank: Yes...

Joe: That just means that if the gumball machine is in the “No Quarter” state and you put a quarter in, it will
change to the “Has Quarter” state. That’s the state transition.

Frank: Oh, Isee! Andif I'm in the “Has Quarter” state, I can turn the crank and change to the “Gumball Sold”
state, or eject the quarter and change back to the “No Quarter” state.

Anne: You got it!

Frank: This doesn’t look too bad then. We’ve obviously got four states, and I think we also have four actions: “inserts
quarter,” “ejects quarter,” “turns crank” and “dispense.” But... when we dispense, we test for zero or more gumballs
in the “Gumball Sold” state, and then either go to the “Out of Gumballs” state or the “No Quarter” state. So we
actually have five transitions from one state to another.

EEIN43

Anne: That test for zero or more gumballs also implies we’ve got to keep track of the number of gumballs too. Any
time the machine gives you a gumball, it might be the last one, and if it is, we need to transition to the “Out of
Gumballs” state.

Joe: Also, don’t forget that you could do nonsensical things, like try to eject the quarter when the gumball machine
is in the “No Quarter” state, or insert two quarters.

Frank: Oh, I didn’t think of that; we’ll have to take care of those too.

Joe: For every possible action we’ll just have to check to see which state we’re in and act appropriately. We can do
this! Let’s start mapping the state diagram to code...

you are here » 387

Download at WoweBook.Com

review of state machines

State machines 101

How are we going to get from that state diagram to actual code? Here’s a quick
introduction to implementing state machines:

o First, gather up your states:

wn‘°3\\ .

Heve ave the states — Lour in total.
o

& </

e Next, create an instance variable to hold the current state, and define values for each of the states:

)
Leb's \')us{', eall “Out of émballs’
“Sold Out” For short.
final static int SOLD OUT = 0; < Heve's eath state vepresented
final static int NO_QUARTER = 1; as a unique integer--
final static int HAS QUARTER = 2;
final static int SOLD = 3;

..and heve's an instance variable that holds the

int state = SOLD_OUT; é_\ eurcent state. Well go ahead and set it to

“Sold Out” sinte the machine will be unfilled when
s fivst taken out of its box and fwened on.

6 Now we gather up all the actions that can happen in the system:

These ac{ions are

. £he aumball mathine’s
rserts °\“ar+'" burns erank J in{:c?(:acc — the things
C\)CC‘lZS ﬂ'ﬁaV‘{',CV you €an do with it

dispense
4)

Disycnsc is move of an internal

Looking at the diagram invoking any of these attion the mathine invokes on itself.
ooKin !

attions tauses 3 state transition.

388 Chapter 10

Download at WoweBook.Com

the state pattern

e Now we create a class that acts as the state machine. For each action,
we create a method that uses conditional statements to determine
what behavior is appropriate in each state. For instance, for the insert
quarter action, we might write a method like this:

public void insertQuarter () {
if (state == HAS_QUARTER) {
Eath ?ossiHc
System.out.println (“You can’t insert another quarter”); state is thetked
, wnﬂ\ a tonditional
} else if (state == SOLD OUT) ({

s{:a{:emcn{:

System.out.println (“You can’t insert a quarter, the machine ig- sold out”)
} else if (state == SOLD) {

System.out.println (“Please wait, we’re already giving you a gumball”);
} else if (state == NO_QUARTER) {

state = HAS_QUARTER;
System.out.println (“You inserted a quarter”);

| and exhibits the a\vvrovv\aicc

th Voss\b\c state-

} behavior for ea

but can also transition to other
states, just as depicted in the diagram.

Here we're talking
about a common fechnique:
modeling state within an object
by creating an instance variable to hold
the state values and writing conditional
code within our methods to handle
the various states.

With that quick review, let’s 9o implement the GQumball Mathine!/

you are here » 389

Download at WoweBook.Com

implement the gumball machine

Writing the code

It’s time to implement the Gumball Machine. We know we’re going to have an instance
variable that holds the current state. From there, we just need to handle all the actions,
behaviors and state transitions that can happen. For actions, we need to implement inserting
a quarter, removing a quarter, turning the crank and dispensing a gumball; we also have the
empty gumball condition to implement as well.

four skakes; they mateh the

Heve ave the éumba\\,s skate diagram-

skates in Mighty
public class GumballMachine { Hcrc’s the instante vaviable that is go'mg to

keep tratk of the curvent state we've in.
chs{:ar{: in the SOLD_OUT state.

final static int SOLD OUT = 0;
final static int NO_QUARTER = 1;
final static int HAS QUARTER = 2;
final static int SOLD = 3;

We have a second instante vaviable that
keeps track of the number of gumballs in

int state = SOLD OUT; the mathine.
int count = 0;
The construetor takes an initial
public GumballMachine (int count) { ihvcn{:or\/ of 5umba||s‘ ,L‘ the invcr\{:or\/
t}fus(, . courgt =Oc)301{mt; isn't zero, the mathine enters state
i count > N 0.
state = NO QUARTER; Nq_QMARTER;mcmmﬂlfnswmfmgfor
} — someone to insert a quarter, otherwise it
} stays in the SOLD OUT state.
Li \cmcn{ing
Now we star ""\’Jc)
. hods..- .
< : the attions as me When a quar Lev is inserted, b
i i ed
public void insertQuarter () { / a ‘\“a"{:‘" is alveady .mSCY{‘,
if (state == HAS_QUARTER) { f we {',C" H\c Lus{',ovnth
System.out.println(“You can’t insert another quarter”); Lherwise we accc‘,{ the
. o
} else if (state == NO QUARTER) ({ ition to the
state = HAS_QUARTER; -~ W“a*{""j;‘\dk_:fggs;g;
System.out.println(“You inserted a quarter”); HAS—Q ’
} else if (state == SOLD OUT) {
System.out.println(“You can’t insert a quarter, the machine is sold out”);
} else if (state == SOLD) {

System.out.println(“Please wait, we’re already giving you a gumball”);
}
} K__
£ the tustomer just bought 3 and if £he machine is sold
qumball he needs to wait until the out, we veject the quarter.
fransattion is tomplete before
inserting another quarter.

390 Chapter 10

Download at WoweBook.Com

the state pattern

(5 Now, if the tustomer tries 4o vemove the quarter..

public void ejectQuarter () { l£ Lheve is 3 a\uav.{", we

if (state == HAS QUARTER) {
i w "y . vetuen it and 90 back to
izziir:o;gglr];;;;;(Quarter returned”); 4/_\ the NO__QMARTER s{:a{:&
} else if (state == NO_QUARTER) ({ &——— Otherwise, if there isn't
System.out.println (“You haven’t inserted a quarter”); one we tan't give it back.
} else if (state == SOLD) {
System.out.println (“Sorry, you already turned the crank”);
} else if (state == SOLD OUT) {
System.out.println(“You can’t eject, you haven’t inserted a quarter yet”);
}
} IK/ You ean't c\)cc{: if the mathine is sold [£ the eustomer \)us{.’
out, it doesn't aceept quarters! furned the evank, we can't

give a vefund; he alveady

The customer tries to tuen the trank... has the gumball,l

public void turnCrank() { F

if (state == SOLD) { Someone’s trying to theat the mathine.
System.out.println (“"Turning twice doesn’t get you another gumball!”);

} else if (state f= NO_E}UARTER) { ,) We need a
Sysi}em.out.priitln(You turned but there’s no quarter”); a\ua\r{:cr f'nrs{:.

} else if (state == SOLD OUT) {

System.out.println (“You turned, but there are no gumballs”); , .

} else if (state == HAS QUARTER) { We can't deliver
System.out.println (:You turned...”); t_x)umbansi there
state = SOLD; are none.
dispense () ; R

} Success/ They 3:{ B 3umba||. Change

) . the state £o SOLD and call the
f Called to dispense a qumball. athings dispersel) method.
public void dispense () { We've in the
if (state == SOLD) { ¥ LD state 9ve

System.out.println (YA gumball comes rolling out the slot”);

count = count - 1;

if (count == 0) {) N)¢ where we \\and\c the
System.out.println (“Oops, out of gumballs!”); fece's

» 4 .
X hd\‘l’,\o“
state = SOLD OUT; Sout of qumballs’ conCE
} else { B fhe last ones

‘em 3 sum\)a“l.

I this was ", Late to
state = NO_QUARTER; set the mathine s $T31 e
} coLD_OUT; otherwises ‘“;
} else if (state == NO_QUARTER) ({ batk g;“o{—, having 3 quav ev.
System.out.println (“You need to pay first”);
: —— <
} else if (state . SOLD OUT) { . Noncof{hcsc should
System.out.println (“No gumball dispensed”); <~ ver h but if
} else if (state == HAS QUARTER) { o~ per happen but
- by : " . they do, we give ‘em an
System.out.println(“"No gumball dispensed”);
} ervor, not a gumball.

// other methods here like toString() and refill ()

you are here » 391

Download at WoweBook.Com

test the gumball machine

In-house testing

That feels like a nice solid design using a well-thought out methodology doesn’t
it? Let’s do a little in-house testing before we hand it off to Mighty Gumball to
be loaded into their actual gumball machines. Here’s our test harness:

Load .It up with

public class GumballMachineTestDrive { five g balls +otal
[m :

392

public static void main (String[] args) {

GumballMachine gumballMachine = new GumballMachine (5);

System.out.println (gumballMachine) ; . _/
Y P (9) S~ Print out the state of the machine.

gumballMachine.insertQuarter () ; @— Throw a quarter in.. /_/

gumballMachine.turnCrank () ;
S~ Turn the erank; we should get our gumball.

System.out.println(gumballMachine); «<——
Print out the state of the machine, again. /

gumballMachine.insertQuarter () ;

gumballMachine.ejectQuarter () ; wa a quarter in... /_/

gumballMachine.turnCrank () ; Ask 1Cor it back.

\ Turn the erank; we shouldn't get our qumball.

System.out.println (gumballMachine) ;
Print out the state of the mathine, again.

gumballMachine.insertQuarter () ;

gumballMachine.turnCrank() ; & Throw a quarter in..
gumballMachine.insertQuarter(); < Tuen the trank; we should get our qumball
gumballMachine.turnCrank () ; = Throw a quarter in...

Turn the trank; we should get our gumball
E—— Ask for a quarter back we didn't put in.

System.out.println (gumballMachine) ;
& Print out the state of the mathine, again. \/
e

gumballMachine.insertQuarter(); Th TWo fers i
gumballMachine.insertQuarter(); row quarters in..

gumballMachine.ejectQuarter () ;

gumballMachine.turnCrank() ; <« —— Tum the erank; we should get our gumball. /_/
gumballMachine.insertQuarter () ;
gumballMachine.turnCrank () ; N— Now for the stress testing..)

gumballMachine.insertQuarter () ;
gumballMachine.turnCrank () ;

System.out.println (gumballMachine) ; Print that mathine state one more time. /

Chapter 10

Download at WoweBook.Com

BARINN

the state pattern

File Edit Window Help mightygumball.com
%$java GumballMachineTestDrive

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 5 gumballs

Machine 1s waiting for quarter

You inserted a quarter
You turned...
A gumball comes rolling out the slot

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 4 gumballs

Machine 1s waiting for quarter

You inserted a guarter
Quarter returne
You turned but there’s no quarter

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 4 gumballs

Machine 1s waiting for quarter

You inserted a quarter

You turned...

A gumball comes rolling out the slot
You inserted a quarter

You turned...

A gumball comes rolling out the slot
You haven’t inserted a quarter

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 2 gumballs

Machine 1s waiting for quarter

You inserted a quarter

You can’t insert another quarter

You turned...)

A gumball comes rolling out the slot

You inserted a quarter

You turned...)

A gumball comes rolling out the slot

Oops, out of gumballs!

You can’t insert a quarter, the machine is sold out
You turned, but there are no gumballs

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 0 alls

Machine 1s sold out

Download at WoweBook.Com

you are here » 393

gumball buying

You knew it was coming... a change request!

Mighty Gumball, Inc. has loaded your code into their new-
est machine and their quality assurance experts are putting
it through its paces. So far, everything’s looking great from
their perspective.

In fact, things have gone so smoothly they’d like to take
things to the next level...

We think that by turning
“gumball buying” into a game we
can significantly increase our
sales. We're going to put one of
these stickers on every machine.
We're so glad we've got Java
in the machines because this is
going to be easy, right?

ﬁ

|O°/o of the Eime,

CEO, M‘%“{\I when the trank /
ﬁumba“l Ine- is twened) the
Kev or customer oets two
Jawbred . waa“s instead
Qumdrop* of one.
amba\\s J
394

Download at WoweBook.Com

the state pattern

Design Puzz]e

Draw a state diagram for a Gumball Machine that handles the 1 in 10
contest. In this contest, 10% of the time the Sold state leads to two
balls being released, not one. Check your answer with ours (at the
end of the chapter) to make sure we agree before you go further...

/

Use Migh’cy Qumball’s s{:a*(:iona\r\/ to draw your state diagram.

you are here » 395

Download at WoweBook.Com

things get messy

The messy STATE of things...

Just because you’ve written your gumball machine using a well-thought out methodology doesn’t
mean it’s going to be easy to extend. In fact, when you go back and look at your code and think
about what you’ll have to do to modify it, well...

final static int SOLD OUT = O0;
final static int NO_QUARTER =

L heve. That isnt too bad...
final static int HAS QUARTER = 2;

final static int SOLD = 3;

public

void insertQuarter () {
insert quarter code here

void ejectQuarter () {
eject quarter code here

void turnCrank () {
turn crank code here

void dispense () {
dispense code here

First, you'd have to add a new WINNER state

. but then, you'd have to add a new tonditiona
& every single method 4o handle the WIN NER state;

/ that's a lot of eode to modif\/‘

turnCrank() will get especially messy, because
\/ou’d have to add tode to cheek to see whether
\/ou,vc 9got a WINNER and then switeh to either
4he WINNER state or the SOLD state.

@ dharpen vour pencil
ndarpenyour

Which of the following describe the state of our implementation?

(Choose all that apply.)

1 A. This code certainly isn’t adhering to the

Open Closed Principle.

[B. This code would make a FORTRAN

programmer proud.

(1 C. This design isn’t even very object

oriented.

(A C. State transitions aren’t explicit; they

are buried in the middle of a bunch of
conditional statements.

(A D. We haven’t encapsulated anything that

J

E.

varies here.

Further additions are likely to cause bugs
in working code.

396 Chapter 10

Download at WoweBook.Com

the state pattern

Okay, this isn't good. I think
our first version was great, but
it isn't going to hold up over time as Mighty
Gumball keeps asking for new behavior. The
rate of bugs is just going to make us look
bad, not to mention that CEO will drive
us crazy.

Joe: You're right about that! We need to refactor this code so that it’s easy
to maintain and modify.

Anne: We really should try to localize the behavior for each state so that if
we make changes to one state, we don’t run the risk of messing up the other
code.

Joe: Right; in other words, follow that ol’ “encapsulate what varies”
principle.

Anne: Exactly.

Joe: If we put each state’s behavior in its own class, then every state just
implements its own actions.

Anne: Right. And maybe the Gumball Machine can just delegate to the
state object that represents the current state.

Joe: Ah, youre good: favor composition... more principles at work.

Anne: Cute. Well, I'm not 100% sure how this is going to work, but I think
we’re on to something.

Joe: I wonder if this will this make it easier to add new states?

Anne: 1 think so... We’ll stll have to change code, but the changes will be
much more limited in scope because adding a new state will mean we just
have to add a new class and maybe change a few transitions here and there.

Joe: Ilike the sound of that. Let’s start hashing out this new design!

you are here » 397

Download at WoweBook.Com

a new design

The new design

It looks like we’ve got a new plan: instead of maintaining our existing code, we’re going to
rework it to encapsulate state objects in their own classes and then delegate to the current
state when an action occurs.

We’re following our design principles here, so we should end up with a design that is easier to
maintain down the road. Here’s how we’re going to do it:

0 First, we’re going to define a State interface that
contains a method for every action in the Gumball
Machine.

Q Then we’re going to implement a State class for
every state of the machine. These classes will be
responsible for the behavior of the machine when it
is in the corresponding state.

@ Finally, we’re going to get rid of all of our conditional
code and instead delegate to the state class to do
the work for us.

Not only are we following design principles, as you’ll see, we’re actually implementing the
State Pattern. But we’ll get to all the official State Pattern stuff after we rework our code...

Now we're going
put all the behavior of a

state into one class. That way,
we're localizing the behavior and
making things a lot easier to
change and understand.

398

Download at WoweBook.Com

the state pattern

Pefining the State interfaces and classes

First let’s create an interface for State, which all our states implement:

Here's the interfate for all states The methods map divectly
4o ackions that could happen to the Gumball Machine (4hese ave
£he same methods as in the previous tode).

<<interface>>

Then take each state in our design State
and encapsulate it in a class that fdsetfguit"e;)()
T . ejectQuarter
implements the State interface. mGrank)

dispense()

To -(:igwc out what

skates we need, we look SoldState SoldOutState NoQuarterState HasQuarterState
t vevious tode... insertQuarter() insertQuarter() insertQuarter() insertQuarter()
at owr p ejectQuarter() ejectQuarter() ejectQuarter() ejectQuarter()
turnCrank() turnCrank() turnCrank() turnCrank()
dispense() dispense() dispense() dispense()
—

N7~

public class GumballMachine { ... and we map eath state
diveetly to a ¢lass.

final static int SOLD OUT = O0;
final static int NO_ QUARTER = 1;
final static int HAS QUARTER = 2;
final static int SOLD = 3;

Don't forget, we need a new “winner” s{:afcc)
that implements the state interface. Well come
back to this after we veimplement the Liest
version of the Gumball Machine.

int state = SOLD OUT;
int count = 0;

WinnerState
insertQuarter()
ejectQuarter()
turnCrank()
dispense()

you are here » 399

Download at WoweBook.Com

what are all the states?

To implement our states, we first need to specify the behavior of the classes
when each action is called. Annotate the diagram below with the behavior of
each action in each class; we’ve already filled in a few for you.

Go to HasQuarterState /\
NoQuarterState
Tell the tustomer, “You haven't insevted a quav-(:cr." insertQuarter()
—\: ejectQuarter()
turnCrank()
dispense()

@ oharpen your pencil
i your p

HasQuarterState
insertQuarter()
ejectQuarter()

Qo to SoldState _% tunCrank()

dispense()

Tell the customer, “Please wait, we've already giving you a qumball.”

\5 SoldState

insertQuarter()
ejectQuarter()
turnCrank()
dispense()

Dispense one gqumball. Check mumber of qumballs; if >0,90 =
to NoRuarterState, otherwise, go to SoldOutState

SoldOutState
insertQuarter()
ejectQuarter()

\——5 tumCrank()

dispense()

Tell the eustomer, “There are no qumballs.”

WinnerState

insertQuarter()
ejectQuarter()
turnCrank()

dispense()
—

Go ahead and fill this out even though we've implementing it later.

400 Chapter 10

Download at WoweBook.Com

the state pattern

Implementing our State classes

Time to implement a state: we know what behaviors we want; we just need to get it down in code. We’re going to
closely follow the state machine code we wrote, but this time everything is broken out into different classes.

Let’s start with the NoQuarterState:

intecfate.
implem L the State nter
First we need to imflene? We get passed a referente to
the Gumball Machine through the
tonstruttor. We've Jus{: 9oing to

stash this in an instante vaviable.

public class NoQuarterState implements State {
GumballMachine gumballMachine;
£ someone inserts a quarter,
we yvin{‘, a message saying the
varter was attepted and then

thange the mathine’s state to
/ the HasQuarterState.

public NoQuarterState (GumballMachine gumballMachine) {
this.gumballMachine = gumballMachine;
}

public void insertQuarter () {
System.out.println (“You inserted a quarter”);

gumballMachine.setState (gumballMachine.getHasQuarterState()) ; Y ,” h -t
oull see how these

work in just a sec...

public void ejectQuarter() {
System.out.println (“You haven’t inserted a quarter”);
< You tant 5‘+‘ money

back if you never gave

public void turnCrank () { it to V‘S!
System.out.println (“You turned, but there’s no quarter”);

IL -{\Chd, you can't get a gumball

}

}

public void dispense () { You don't pay us.
System.out.println (“You need to pay first”); V\
} We can’t be dispensing
} 5"”‘b3”5 without Fa\/mcn‘{:.

What we're doing is
implementing the behaviors
that are appropriate for the
state we're in. In some cases, this
behavior includes moving the
Gumball Machine to a hew state.

you are here » 401

Download at WoweBook.Com

state objects in the gumball machine

Reworking the Gumball Machine

Before we finish the State classes, we'e going to rework the Gumball Machine - that way
you can see how it all fits together. We'll start with the state-related instance variables
and switch the code from using integers to using state objects:

402

public class GumballMachine {

final
final
final
final

int state
int count

4

Old eode

static
static
static
static

Chapter 10

int SOLD
int NO_QUARTER ;
int HAS QUARTER = 2;

int SOLD

SOLD OUT;
0;

OUT = 0;
. [n the éumba\\Mach\ne,
tode to use the new
the statie integers-
similav, except tha

\“{ggcrs and

= 3;

we update the

tlasses vather than
The code is auite

+ in one tlass we have
in the other ob\')cchs-..

State soldOutState;
State noQuarterState;
State hasQuarterState;

public class GumballMachine ({

State soldState;
///;’7 State soldOutState;
int count ;

New tode

All the State ob\)ccﬁs ave treated
and assigned in the tonstructor.

Download at WoweBook.Com

Th‘s now ho\ds a
Ghate ob\')cf.{) not

an in{:cgck‘-

Now, let’s look at the complete GumballMachine class...

public class GumballMachine {

—

State soldOutState;
State noQuarterState;
State hasQuarterState;
State soldState;

the state pattern

Heve ave all fhe States again--

..and the State instante variable.
The eount instance variable holds

State state =
int count = 0;

public GumballMachine (int numberGumballs) {

}

the tount of 3umba”s - ini‘Eiall\/ the
mathine is cmp{;y.

L(/”‘—‘____———i\\\ Owr consbruetor Lakes the

\s 6nd
iitial number of 3umba\ .
‘sn{-‘,t‘risn\rc in an instance vaviable:

tes the State
eath.

soldOutState;

soldOutState = new SoldOutState (this);

noQuarterState = new NoQuarterState (this); <5\\\
) |t also ered

instantes, one

hasQuarterState = new HasQuarterState (this
soldState = new SoldState (this);
this.count = numberGumballs;
if (numberGumballs > 0) {

state = noQuarterState;

I there are more than O

gumballs we set +h tate to th
} NoQuarterState. T :

Lions- These 3v¢

) s he at e
public void insertQuarter() { Now for ¥ . olement now-

state.insertQuarter(); \/ER\{ EP‘S\(to 3\\:6;\""“{" s{',a{',c-
} :)us{; deleoate o

public void ejectQuarter() {

}

public void turnCrank() {

}

S
state.ejectQuarter(); / Hﬁ +hat we don't need an
attion method for dispense() in
GumballMachine because it's just an
inkevnal action; a user tan't ask the
machine to dispense direetly. But we
do ¢all dispense() on the State object
£rom the twenCrank() method.

-

state.turnCrank() ;
state.dispense();

void setState (State state) {

}

&~ T This method allows other ob\’)ct,{:s (like
owr State ob)ccﬁ) +o transition the
mathine to a different state.

this.state = state;

void releaseBall() {

}

System.out.println (“A gumball comes rolling out the slot...”);
if (count != 0) {
count = count - 1;

The machine supports a veleaseBall()
} K_/ helper method that veleases the ball and
decrements the count instante variable.

// More methods here including getters for each State...

/t This includes methods like getNoQuarterState() for getting each
state ob\)cé‘{:, and gc‘tCouh{‘,() for ch:ins the gumba” count.

you are here » 403

Download at WoweBook.Com

more states for the gumball machine

Implementing more states

Now that you're starting to get a feel for how the Gumball Machine and the states

fit together, let’s implement the HasQuarterState and the SoldState classes...

public class HasQuarterState implements State {
GumballMachine gumballMachine;

public HasQuarterState (GumballMachine gumballMachine)

this.gumballMachine = gumballMachine;
}

public void insertQuarter () {
}

public void ejectQuarter () {
System.out.println (“Quarter returned”);

gumballMachine.setState (gumballMachine.getNoQuarterState());

}

public void turnCrank () {
System.out.println (“You turned...”);

18 s«tay\‘t\a{',cd
When he s{za\i};e: ce to the

e This s el

we Pass it ak
\oa\\Mac n ~
i:m{'xav\s'\{i\on the mathine

dikfevent state

Av\ \Y\aY VOYY-‘ a{:c

L/—\ stkion ko this

System.out.println (“You can’t insert another quarter”); s{;a{%

K Return the customer’s
quarter and
{:Y'ansi{','lon batk to the

NoQuarterState.

< When the erank is

sition
gumballMachine.setState (gumballMachine.getSoldState()) ; turned we teansi
} the mathine to the

public void dispense () { Solds‘{;a{x Late b\/
System.out.println (“*No gumball dispensed”); La"'mg ks sc{'SJca{:c()
method and passing it
the SoldState ob)cc{:.
The SoldState ob\')cc{:

}

| "
P(no{',\'\“

inappropriate is vebrieved by the
\;\:‘E“;“ or this " +SoldSta te0)
state. getter method

(+heve is one of these
getter methods for
eath state).

404 Chapter 10

Download at WoweBook.Com

the state pattern

Now, let’s check out the SoldState class... Il the
Hteve ave 3
'\V\AYYV"\W.‘a{"i\‘.
. \S
public class SoldState implements State { attions or
state

//constructor and instance variables here

public void insertQuarter() {

System.out.println (“Please wait, we’re already giving you a gumball”);

}

public void ejectQuarter() {

System.out.println (“Sorry, you already turned the crank”);

}

public void turnCrank() {
System.out.println (“"Turning twice doesn’t get you another gumball!”);

}

public void dispense () {
gumballMachine.releaseBall () ;
if (gumballMachine.getCount() > 0) {
gumballMachine.setState (gumballMachi
} else {
System.out.println (“Oops, out of
gumballMachine.setState (gumball

.getNoQuarterState());

balls!”);
chine.getSoldOutState());

) the .
d heres wheve dhich s ha
" | work begne: We've in the SO\dg‘bah\d‘.N So, Then :J..\ba\\ count 19 and i g
ved eans khe cus‘c,omcrkvi N {he o Tiom b0 the NoQuarter
" 4 sition
we ‘c'\rs{; need h:;isa 3\m\33 L ‘h\;a'{.‘)‘c cold O\A‘hg‘ta Le

mab‘\."‘c {;o ‘(C\C

B RANN
PQWEWR

Look back at the GumballMachine implementation. If the crank is turned and not successful (say
the customer didn’t insert a quarter first), we call dispense anyway, even though it's unnecessary.

How might you fix this?

you are here » 405

Download at WoweBook.Com

your turn to

We have one remaining class we haven’t implemented: SoldOutState.
Why don’t you implement it? To do this, carefully think through how
the Gumball Machine should behave in each situation. Check your
answer before moving on...

public class SoldOutState implements [:::::::::] {

GumballMachine gumballMachine;

@s.oharpen vour pencil
i’ your p

public SoldOutState (GumballMachine gumballMachine) {

public void insertQuarter () {
public void ejectQuarter () {

public void turnCrank() {

public void dispense () {

406

Download at WoweBook.Com

the state pattern

Let’s take a look at what we've done so far...

Tor starters, you now have a Gumball Machine implementation that is structurally quite different from your
first version, and yet functionally it is exactly the same. By structurally changing the implemention you've:

® Localized the behavior of each state into its own class.

® Removed all the troublesome if statements that would have been difficult to maintain.

® (losed each state for modification, and yet left the Gumball Machine open to extension by
adding new state classes (and we’ll do this in a second).

Created a code base and class structure that maps much more closely to the Mighty Gumball
diagram and is casier to read and understand.

Now let’s look a little more at the functional aspect of what we did:

éumba\\ Mathine now holds an

¢ eath Skate €255 TN eumball Machine Stafes

The
'\V\S{'ﬁ"(’c

current state

S O
Nbal) MOC\N{\

The turvent state of the

machine is always one of
these ¢elass instances.

SoldOut

you are here » 407

Download at WoweBook.Com

state transitions

ction is talled, it is o
ﬁ/:;:;ai:: {:owzhc cucrent state. ¢umball Machine Sta

L,__é tumCrank() @
Ao

turnCrank()

In this ase the turnCrank()
method is being called when the
machine is in the HasQuarter
state, so as a vesult the macthine
transitions to the Sold state.

TRANSITION To SOLD STATE \L

athine enters

The m nd 3

Ehe SO\\O\. sﬁ:e:scd... ¢umball Machine States

oumball s move qumoalls

dispense() @‘ ~.and then the

mathine will
either 90 to
the SoldOut
or NoQuarter

state depending

on the number of
gumballs vemaining

in the mathine.

4) sold out:

408 Chapter 10

Download at WoweBook.Com

the state pattern

0 harpen our pencil
S your p

Trace the steps of the Gumball Machine starting with the NoQuarter state. Also annotate the diagram with actions
and output of the machine. For this exercise you can assume there are plenty of gumballs in the machine.

@) ®

Gomball Machin Safes Gumball Machine States

() A/QsQutj

QL [.
@"’”banmocw “mbaimec™
Sol i.
Sol, Sol

Gumball Machine tates Gumball Machine States
O
IS) s Qe
“Mbalimec™

Sold Sol
g [l g
Sal @

you are here » 409

Download at WoweBook.Com

state pattern defined

The State Pattern defined

Yes, it’s true, we just implemented the State Pattern! So now, let’s take a look at what it’s all about:

The State Pattern allows an object to alter its behavior
when its internal state changes. The object will appear to
change its class.

The first part of this description makes a lot of sense, right? Because the pattern encapsulates state into
separate classes and delegates to the object representing the current state, we know that behavior changes
along with the internal state. The Gumball Machine provides a good example: when the gumball machine
1s in the NoQuarterState and you insert a quarter, you get different behavior (the machine accepts the
quarter) than if you insert a quarter when it’s in the HasQuarterState (the machine rejects the quarter).

What about the second part of the definition? What does it mean for an object to “appear to change its
class?” Think about it from the perspective of a client: if an object you’re using can completely change its
behavior, then it appears to you that the object is actually instantiated from another class. In reality, however,

you know that we are using composition to give the appearance of a class change by simply referencing
different state objects.

Okay, now it’s time to check out the State Pattern class diagram:

The State intevface defines a tommon

interface for all contrete states 4
. ; th
P f"‘{"‘{: Isb{hcoilésjc:“::{l: states all implement the same in{crfa:c
tan have 3 numbevr n o ! ,
states. In our example, the © they are interthangeable.
QumballMathine is the Context.
K» Context > State
requ?st() I handle()
‘ state.handle) ConcreteStateA ConcreteStateB >

b
ﬁ handle() I nandel Ma"y e
5{53{165 dre Possible.
-thncvcv- the request() K j
is made on the Context

. teStates handle vequests Lrom the
;ialz dzlcgaﬁd e g::i:i; Eath ContreteState provides its
e own im\?lcmcnha{:ion for a \rca\ucs’c. In {?,his
way, when the Context thanges state, its

behavior will thange as well.

410 Chapter 10

Download at WoweBook.Com

the state pattern

Wait a sec,
from what I remember
of the Strategy Pattern,
this class diagram is
EXACTLY the same.

You've got a good eye! Yes, the class diagrams are essentially the
same, but the two patterns differ in their nfent.

With the State Pattern, we have a set of behaviors encapsulated in
state objects; at any time the context is delegating to one of those
states. Over time, the current state changes across the set of state
objects to reflect the internal state of the context, so the context’s
behavior changes over time as well. The client usually knows very
little, if anything, about the state objects.

With Strategy, the client usually specifies the strategy object that

the context is composed with. Now, while the pattern provides the
flexibility to change the strategy object at runtime, often there is a
strategy object that is most appropriate for a context object. For
nstance, in Chapter 1, some of our ducks were configured to fly
with typical flying behavior (like mallard ducks), while others were
configured with a fly behavior that kept them grounded (like rubber
ducks and decoy ducks).

In general, think of the Strategy Pattern as a flexible alternative to
subclassing; if you use inheritance to define the behavior of a class,
then you’re stuck with that behavior even if you need to change it.
With Strategy you can change the behavior by composing with a
different object.

Think of the State Pattern as an alternative to putting lots of
conditionals in your context; by encapsulating the behaviors within
state objects, you can simply change the state object in context to
change its behavior.

411

Download at WoweBook.Com

q&a about the

412

therejare no

Dumb Questions

Q: In the GumballMachine, the states decide
what the next state should be. Do the ConcreteStates
always decide what state to go to next?

AZ No, not always. The alternative is to let the Context
decide on the flow of state transitions.

As a general guideline, when the state transitions are fixed
they are appropriate for putting in the Context; however,
when the transitions are more dynamic, they are typically
placed in the state classes themselves (for instance, in the

GumballMachine the choice of the transition to NoQuarter or

SoldOut depended on the runtime count of gumballs).

The disadvantage of having state transitions in the state
classes is that we create dependencies between the state
classes. In our implementation of the GumballMachine
we tried to minimize this by using getter methods on the
Context, rather than hardcoding explicit concrete state
classes.

Notice that by making this decision, you are making a
decision as to which classes are closed for modification
— the Context or the state classes — as the system evolves.

Q: Do clients ever interact directly with the
states?

AZ No. The states are used by the Context to
represent its internal state and behavior, so all requests
to the states come from the Context. Clients don't directly
change the state of the Context. Itis the Context’s job

to oversee its state, and you don't usually want a client
changing the state of a Context without that Context's
knowledge.

Q: If I have lots of instances of the Context in my
application, is it possible to share the state objects
across them?

A: Yes, absolutely, and in fact this is a very common
scenario. The only requirement is that your state objects do
not keep their own internal state; otherwise, you'd need a

unique instance per context.

To share your states, you'll typically assign each state to a
static instance variable. If your state needs to make use of
methods or instance variables in your Context, you'll also
have to give it a reference to the Context in each handler()
method.

Q} It seems like using the State Pattern always
increases the number of classes in our designs. Look
how many more classes our GumballMachine had
than the original design!

A: You're right, by encapsulating state behavior

into separate state classes, you'll always end up with
more classes in your design. That's often the price you
pay for flexibility. Unless your code is some “one off’
implementation you're going to throw away (yeah, right),
consider building it with the additional classes and you'll
probably thank yourself down the road. Note that often
what is important is the number of classes that you expose
to your clients, and there are ways to hide these extra
classes from your clients (say, by declaring them package
visible).

Also, consider the alternative: if you have an application
that has a lot of state and you decide not to use separate
objects, you'll instead end up with very large, monolithic
conditional statements. This makes your code hard to
maintain and understand. By using objects, you make
states explicit and reduce the effort needed to understand
and maintain your code.

Q} The State Pattern class diagram shows
that State is an abstract class. But didn’t you use
an interface in the implementation of the gumball
machine’s state?

AZ Yes. Given we had no common functionality to

put into an abstract class, we went with an interface. In
your own implementation, you might want to consider an
abstract class. Doing so has the benefit of allowing you to
add methods to the abstract class later, without breaking the
concrete state implementations.

Download at WoweBook.Com

the state pattern

We still need to finish the Gumball 1 in 10 game

Remember, we’re not done yet. We’ve got a game to implement; but now that we’ve got the State
Pattern implemented, it should be a breeze. First, we need to add a state to the GumballMachine class:

public class GumballMachine {

State soldOutState;

State noQuarterState; Al You need to add heve is the

State hasQuarterState; new WinnerState and initialize

State S?ldState; /—\ it in the constructor.

State winnerState;

State state = soldOutState;

int count = 0;

Don't (:orgc{: Yyou also have

// methods here / Lo add a oetter method for

} WinnerState too.

Now let’s implement the WinnerState class itself; it’s remarkably similar to the SoldState class:

public class WinnerState implements State {

// instance variables and constructor /_\ Just like SoldState:

// insertQuarter error message

[/ electuarter error message Heve we velease two gumballs and then
either 9o to the NoQuarterState or the

// turnCrank error message dpuiotate

public void dispense() {

System.out.println (“YOU’RE A WINNER! You get two gumballs for your quarter”);
gumballMachine.releaseBall () ;

if (gumballMachine.getCount () == 0) {
gumballMachine.setState (gumballMachine.getSoldOutState()) ;
} else {
gumballMachine.releaseBall () ; T Asbngaswc
if (gumballMachine.getCount () > 0) { ygvcasannd
gumballMachine.setState (gumballMachine.getNoQuarterState()) ; 5umbd|wc
b else { velease it.

System.out.println (“Oops, out of gumballs!”);
gumballMachine.setState (gumballMachine.getSoldOutState());

you are here » 413

Download at WoweBook.Com

implementing the 1 in 10 game
Finishing the game

We’ve just got one more change to make: we need to implement the random
chance game and add a transition to the WinnerState. We’re going to add both to
the HasQuarterState since that is where the customer turns the crank:

o Fiest we add 3

public class HasQuarterState implements State { vandom numbCY'

Random randomWinner = new Random(System.currentTimeMillis()) ;

o
GumballMachine gumballMachine; SC“CYa‘hOY 10%
gcncvaﬁc the :
public HasQuarterState (GumballMachine gumballMachine) { thante of winning:-

this.gumballMachine = gumballMachine;

public void insertQuarter () {
System.out.println (“You can’t insert another quarter”);

public void ejectQuarter() {
System.out.println (“Quarter returned”); .
gumballMachine.setState (gumballMachine.getNoQuarterState()) ; --~'U‘C" we de{""‘"‘c
} if this tustomer won.
public void turnCrank() {

System.out.println(“You turned...”);

int winner = randomWinner.nextInt (10);

if ((winner == 0) && (gumballMachine.getCount () > 1)) {
gumballMachine.setState (gumballMachine.getWinnerState()) ;

} else {
gumballMachine.setState (gumballMachine.getSoldState()) ; <F;>

} £ they won, and there’s

public void dispense () {
System.out.println (“No gumball dispensed”); them to 56‘{: two, we
)

enough gumballs left for

90 to the WinnerState;
otherwise, we g0 to the
SoldState (just like we

always did).

Wow, that was pretty simple to implement! We just added a new state to the GumballMachine
and then implemented it. All we had to do from there was to implement our chance game and
transition to the correct state. It looks like our new code strategy is paying off...

414 Chapter 10

Download at WoweBook.Com

the state pattern

Pemo for the CEOQ of Mighty Guwmball, Inc.

The CEO of Mighty Gumball has dropped by for a demo of your new gumball game code. Let’s
hope those states are all in order! We’ll keep the demo short and sweet (the short attention span of
CEOs 1s well documented), but hopefully long enough so that we’ll win at least once.

This tode veally hase't ehanged at all

we \')us{ chovtened it 3 bit.

Onte, again, start with a gumball
public class GumballMachineTestDrive { of' machine with & gumballs.
public static void main(String[] args) {
GumballMachine gumballMachine = new GumballMachine (5);

System.out.println (gumballMachine) ;

umballMachine.insertQuarter () ;
gumballMachine .turnCrank () ; ! é\ We want to 55{3 3 winning state,
so we 3us+, keep pumping in those
System.out.println (gumballMachine) ; o\uav-{crs and turning the evank. We
?riy\{; out the state of the 5umba||
gumballMachine.insertQuarter(); macthine every so Jicn...

gumballMachine.turnCrank() ;
gumballMachine.insertQuarter () ;
gumballMachine.turnCrank() ;

System.out.println (gumballMachine) ;

The whole engineexring Leam is waiting

oukside the tonkerente voom to see

£ the new State Pattern—based
design is 90inY +o work!!

you are here » 415

Download at WoweBook.Com

testing the gumball machine

Yes! That rocks!

File Edit Window Help Whenisagumballajawbreaker?

%java GumballMachineTestDrive

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 5 gumballs

Machine is waiting for quarter

You inserted a quarter

You turned...

YOU’'RE A WINNER! You get two gumballs for your quarter
A gumball comes rolling out the slot...

A gumball comes rolling out the slot...

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 3 gumballs

Machine is waiting for quarter

You inserted a quarter

You turned...

A gumball comes rolling out the slot...
You inserted a quarter

You turned...

Gee did we 5c{', \ucky or what? YOU’RE A WINNER! You get two gumballs for your quarter
! the CEO, we /7 A gumball comes rolling out the slot...

l e dcmo ‘to -

ne but twite A gumball comes rolling out the slot...

won not onte ’ Oops, out of gumballs!

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 0 gumballs

Machine is sold out

)

therejare no

Dumb Questions

Q_: Why do we need the WinnerState? Couldn’t we just have the SoldState dispense two gumballs?

A: That's a great question. SoldState and WinnerState are almost identical, except that WinnerState dispenses two
gumballs instead of one. You certainly could put the code to dispense two gumballs into the SoldState. The downside
is, of course, that now you've got TWO states represented in one State class: the state in which you're a winner, and the
state in which you're not. So you are sacrificing clarity in your State class to reduce code duplication. Another thing to
consider is the principle you learned in the previous chapter: One class, One responsibility. By putting the WinnerState
responsibility into the SoldState, you've just given the SoldState TWO responsibilities. What happens when the
promotion ends? Or the stakes of the contest change? So, it's a tradeoff and comes down to a design decision.

416 Chapter 10

Download at WoweBook.Com

the state pattern

Bravo! Great job,
gang. Our sales are already going
through the roof with the new game.
You know, we also make soda machines,
and I was thinking we could put one of
those slot machine arms on the side and
make that a game too. We've got four
year olds gambling with the gumball
machines; why stop there?

Sanity check...

Yes, the CEO of Mighty Gumball probably needs a sanity check, but that’s
not what we’re talking about here. Let’s think through some aspects of the
GumballMachine that we might want to shore up before we ship the gold version:

" We've got a lot of duplicate code in the Sold and Winning
states and we might want to clean those up. How would we
do it? We could make State into an abstract class and build in
some default behavior for the methods; after all, error messages / Dammik Jim
amml)

like, “You already inserted a quarter,” aren’t going to be seen f ball
13 bhl : l m a 5“"\ a
by the customer. So all “error response” behavior could be athine, not 3
. . .)
generic and inherited from the abstract State class. " &]
COV'\Y\A ey

® The dispense() method always gets called, even if the crank is
turned when there is no quarter. While the machine operates
correctly and doesn’t dispense unless it’s in the right state, we
could easily fix this by having turnCrank() return a boolean,
or by introducing exceptions. Which do you think is a better
solution?

® Al of the intelligence for the state transitions is in the State
classes. What problems might this cause? Would we want to
move that logic into the Gumball Machine? What would be
the advantages and disadvantages of that?

® Will you be instantiating a lot of GumballMachine objects?
If so, you may want to move the state instances into static
instance variables and share them. What changes would this
require to the GumballMachine and the States?

417

Download at WoweBook.Com

fireside chats: state and strategy

Flre81de Oha,ts

Strategy

Hey bro. Did you hear I was in Chapter 1?

I was just over giving the Template Method guys a
hand — they needed me to help them finish off their
chapter. So, anyway, what is my noble brother up
to?

I don’t know, you always sound like you’ve just
copied what I do and you’re using different words
to describe it. Think about it: I allow objects to
incorporate different behaviors or algorithms
through composition and delegation. You’re just
copying me.

Oh yeah? How so? I don’t get it.

Yeah, that was some fine work... and I’'m sure you
can see how that’s more powerful than inheriting
your behavior, right?

Sorry, you're going to have to explain that.

418 Chapter 10

Tonight: A Strategy and State Pattern Reunion.

State

Yeah, word 1s definitely getting around.

Same as always — helping classes to exhibit different
behaviors in different states.

I admit that what we do is definitely related, but my
intent is totally different than yours. And, the way I
teach my clients to use composition and delegation
is totally different.

Well if you spent a little more time thinking about
something other than yourself, you might. Anyway;,
think about how you work: you have a class you’re
instantiating and you usually give it a strategy
object that implements some behavior. Like, in
Chapter 1 you were handing out quack behaviors,
right? Real ducks got a real quack, rubber ducks
got a quack that squeaked.

Yes, of course. Now, think about how I work; it’s
totally different.

Download at WoweBook.Com

Strategy

Hey, come on, I can change behavior at runtime
too; that’s what composition is all about!

Well, I admit, I don’t encourage my objects to have
a well-defined set of transitions between states. In
fact, I typically like to control what strategy my
objects are using,

Yeah, yeah, keep living your pipe dreams brother.
You act like you’re a big pattern like me, but check
it out: 'm in Chapter 1; they stuck you way out in
Chapter 10. I mean, how many people are actually
going to read this far?

That’s my brother, always the dreamer.

the state pattern

State

Okay, when my Context objects get created, I may
tell them the state to start in, but then they change
their own state over time.

Sure you can, but the way I work 1s built around
discrete states; my Context objects change state
over time according to some well defined state
transitions. In other words, changing behavior is
built in to my scheme — it’s how I work!

Look, we’ve already said we’re alike in structure, but
what we do is quite different in intent. Face it, the
world has uses for both of us.

Are you kidding? This is a Head First book and
Head First readers rock. Of course they’re going to
get to Chapter 10!

419

Download at WoweBook.Com

420

refill exercise

We almost forgot!

i

Mighty Gumba]], Ine.

Where the Gumball Maching
is Never Half Empty

Theve's one transition we foroot o put in the oviii,nal sicc...
we need a way +o vefill the gwnball mathine when iT's ow of
gwnba\ls! Heve's £he new diagram — tan Yot imylcmcn{; '\{:.‘co\r us?
You did suth a good job on Ehe vest of the qumball mathine we
have no doubt you tan add this in 3) \/'

— The Mighty Qumball Engineers

rc-(:i"

Chapter 10

Download at WoweBook.Com

the state pattern

@%ﬁrpen your pencl
\\k We need you to write the refill() method for the Gumball machine. It has one

argument — the number of gumballs you're adding to the machine — and should
update the gumball machine count and reset the machine’s state.

You've done some amazing work!
T've got some more ideas that
are going to change the gumball
industry and I need you to implement
them. Shhhhh! T'll let you in on these
ideas in the next chapter.

you are here » 421

Download at WoweBook.Com

who does

.*.

Match each pattern with its description:

*_
WHQ DQES wHHaT™

%

.*.

Pattern Description
Encapsulate interchangeable
State behaviors and use delegation to
decide which behavior to use
Strategy Subclasses decide how
to implement steps in an
algorithm
Témplate Method Encapsulate state-based

behavior and delegate
behavior to the current state

422

Download at WoweBook.Com

Tools for your Pesign Toolbox

It’s the end of another chapter; you’ve got enough
patterns here to breeze through any job interview!

Pasies

sbrattion

00 Printiples

Encapsuiate what varies:
N

wkante .
¥ LomYOS\hon ovex nher! Y\“sm
avor
vam Lo inkeckates: not o
fv:oa.mcn‘\’,a‘t\ons

\ed desigrs
Shrive Q“\,\ ooﬁ\l&:f\n’ce*a“

en ‘cd\’ C"‘kc“s‘on

C‘?ZL::Z"E?Z&;acag.o“. “S
: et - cntiples v
Depend o0 Jostrat \o(\ass“' - Y H\a‘h . g
dc\‘:a\d on contrete & dna?)(’“, o
Lalk to your Lrien) - bt
only

A class shovld ha

)
S our new
i thange: HCY‘C

pattern. £ you'rc
managing state in

\ a tlass, the State
. Patteen gives you
OO Pa‘h{:cv“s 5 a {:céhn'l'\uc ‘(:o\'
’ . . . Cncavsula{'jhg that
S (t S .A%M o r. | | . state.

)

Download at WoweBook.Com

BULLET POIN&

the state pattern

The State Pattern allows an
object to have many different
behaviors that are based on its
internal state.

Unlike a procedural state
machine, the State Pattern
represents state as a full-blown
class.

The Context gets its behavior
by delegating to the current
state object it is composed
with.

By encapsulating each state
into a class, we localize any
changes that will need to be
made.

The State and Strategy
Patterns have the same class
diagram, but they differ in
intent.

Strategy Pattern typically
configures Context classes
with a behavior or algorithm.

State Pattern allows a Context
to change its behavior as the
state of the Context changes.

State transitions can be
controlled by the State classes
or by the Context classes.

Using the State Pattern will
typically result in a greater
number of classes in your
design.

State classes may be shared
among Context instances.

you are here » 423

exercise solutions

SO Exercise solutions

— —

~n, Wnn™
L /

] Gum ne .6"'%" A o \
] J n 2™ N0 \ £
ere the Gumball Machine aumballs = O ¥ K] —677,
J > A S »
is Never Half Empty p / .qve :V'd'[r)

424 Chapter 10

Download at WoweBook.Com

the state pattern

Exercise so]utions

G harpen our pencil
B, /

Based on our first implementation, which of the following apply?
(Choose all that apply.)

WA This code certainly isn’t adhering to the Q/C State transitions aren’t explicit; they

Open Closed Principle! are buried in the middle of a bunch of
V B. This code would make a FORTRAN E/ conditional code.

programmer proud. D. We haven’t encapsulated anything that
J C. This design isn’t even very object varies here.

oriented. [’ E. Further additions are likely to cause bugs

in working code.

We have one remaining class we haven’t implemented: SoldOutState.
Why don’t you implement it? To do this, carefully think through how
the Gumball Machine should behave in each situation. Check your
answer before moving on...

7 harpen our pencil
S y

Out state, we veally

| someont

In the Sold - .
cant do anything r}t\‘ chine
a .
public class SoldOutState implements State { vefills the a“"‘ba\

GumballMachine gumballMachine;

public SoldOutState (GumballMachine gumballMachine) {
this.gumballMachine = gumballMachine;

}

public void insertQuarter () {
System.out.println (“You can’t insert a quarter, the machine is sold out”);

}

public void ejectQuarter() {
System.out.println(“You can’t eject, you haven’t inserted a quarter yet”);

}

public void turnCrank() {
System.out.println (“You turned, but there are no gumballs”);

}

public void dispense () {
System.out.println (“*No gumball dispensed”);

}

425

Download at WoweBook.Com

exercise solutions

0 harpen Your pencll
A To implement the states, we first need to define what the behavior will be
when the corresponding action is called. Annotate the diagram below with the
behavior of each action in each class; we’ve already filled in a few for you.

Go to HasQuarterState
Tell the tustomer * oy ” NoQuarterState
© fustomer o haven't lhscr“:cd a ﬂ"ar{:" insertQuarter()
—\D ejectQuarter()

Tell the tustomer “\/ou turned, but there’s no c\uarfer" < | tumCrank)
di 0
Tell the customer “\/ou need o pay festh = ispensef

Tell th “Sou can't i ,
ell the customer “you can't insert another quarter \ e
Give back quarter, 90 to No Quarter state insertQuarter()
6 ‘to Sol ‘{:af H ejectQuarter()
’ o ‘ % turnCrank()
dispense()

Tell the tustomer, “no gumball dispensed”

Tell the eustomer “please wait, we've alveady giving you a gumball”
\5 SoldState

Tell the tustomer “sor\r\/, YYou alvcady turned the evank” \ insertQuarter()
ejectQuarter()

Tell the customer “turning twice doesn't 9et you another qumball” == | tumCrank)

dispense()

Dispense one gumball. Cheek number of qumballs; i > O, g |
to NoQuarter state, otherwise, 90 to Sold Out state

Tell the customer “the mathine is sold out”

Tell the eustomer “\/ou haven't inserted a quarter \/c{” SoldOutState
\ insertQuarter()
Tell the tustomer “There are no qumballs” ejectQuarter()
\——> turnCrank()

Tell ’chc tustomer “no Sumball diS?cnscd" 3/ dispense()
Tell the customer “please wait, we've already giving you a qumball” :
« \5 WinnerState
Tell the customer sorry, You alrcad\/ turned the evank” \ insertQuarter()
ejectQuarter()

Tell the eustomer “turning tuice doesn’t get you another qumball’ — = | umcrank

dispense()

Disycnsc two qumballs. Cheek number of gumballs; if > 0,)
90 to NoRuarter state, otherwise, g0 to SoldOutState

426 Chapter 10

Download at WoweBook.Com

the state pattern

Behind the Scenes:
Self-Guided Tour
Solution

dclcgafcs to
Curvrent 5-{:3.&2

@

insertQuarter() g ypg(l Machine Sfates dclcgafcs 2 ¢umball Machine States

turnCrank|
A,
turnCrank() { current state @
/
T J A/OSQu

insertQuarter()

L
MbalimeC™

machine a¢tion machine action

| 3

transitions to
HasQuarter state
transitions to
Sold state
S

¢umball Machine Sfates

¢umball Machine Sfates

&

6\(/’77[%1/”\!\0c

Heve the mathine
gives out a gumball

by calling the internal
d:/s\:cnsl:g ac{;irn. " 3 and then transitions

to NoQuarter

e e W

you are here » 427

Download at WoweBook.Com

exercise

@ oharpen vour pencil
narpenyour

. O

* *
WHO DQES wWHaAT™?

Match each pattern with its description:

Pattern Description

Encapsulate interchangeable
State behaviors and use delegation to
decide which behavior to use

Subclasses decide how

Sﬁmﬂgy
to implement steps in an
algorithm
Encapsulate state-based
Template Methed behavior and delegate

behavior to the current state

We need you to write the refill() method for the Gumball machine. It has one
argument, the number of gumballs you’re adding to the machine, and should
update the gumball machine count and reset the machine’s state.

void refill (int count) {
this.count = count;
state = noQuarterState;

428

Download at WoweBook.Com

	Chapter 10: the State Pattern

