
this is a new chapter 385

A little known fact: the Strategy and State Patterns were twins 
separated at birth.  As you know, the Strategy Pattern went on to create a wildly 

successful business around interchangeable algorithms.  State, however, took the perhaps 

more noble path of helping objects to control their behavior by changing their internal 

state. He’s often overheard telling his object clients, “Just repeat after me: I’m good 

enough, I’m smart enough, and doggonit...”

10  the State Pattern

The State of Things
I thought things in Objectville 
were going to be so easy, but now 
every time I turn around there’s 

another change request coming in.  
I’m to the breaking point! Oh,  maybe 

I should have been going to Betty’s 
Wednesday night patterns group all 

along. I’m in such a state!

g
h

g

Download at WoweBook.Com



386 Chapter 10

Java toasters are so ‘90s.  Today people are building Java into 
real devices, like gumball machines. That’s right, gumball 
machines have gone high tech; the major manufacturers have 
found that by putting CPUs into their machines, they can 
increase sales, monitor inventory over the network and measure 
customer satisfaction more accurately.  

But these manufacturers are gumball machine experts, not 
software developers, and they’ve asked for your help:

Jaw  Breakers

Mighty Gumball, Inc.
Where the Gumball Machine 

is Never Half Empty

Here’s the way we think the gumball machine controller needs to 

work. We’re hoping you can implement this in Java for us!  We 

may be adding more behavior in the future, so you nee
d to keep 

the design as flexible and maintainable as possible!

       -  Mighty Gumball Engineers

Out of 
Gumballs

   Has 
Quarter

   No 

Quarter

Gumball 

  Sold

ins
er

ts 
qu

ar
te

r

eje
ct

s q
ua

rt
er

turns crank

va

At least that’s 
their story – we 

think they just
 got bored with the 

circa 1800’s technology a
nd needed 

to find a way to make their jobs 

more exciting.

dispense 
gumball

gumballs = 0

gumballs > 0

meet mighty gumball

Download at WoweBook.Com



the state pattern

you are here 4 387

Cubicle Conversation
Let’s take a look 

at this diagram and see 
what the Mighty Gumball 

guys want...

Anne: This diagram looks like a state diagram.

Joe:  Right, each of  those circles is a state...

Anne:  ... and each of  the arrows is a state transition.

Frank:  Slow down, you two, it’s been too long since I studied state diagrams.  
Can you remind me what they’re all about?

Anne:  Sure, Frank.  Look at the circles; those are states. “No Quarter” is 
probably the starting state for the gumball machine because it’s just sitting 
there waiting for you to put your quarter in.  All states are just different 
configurations of  the machine that behave in a certain way and need some 

action to take them to another state.

Joe:  Right.  See, to go to another state, you need to do something like put a quarter in the machine.  See the arrow 
from “No Quarter” to “Has Quarter?”

Frank:  Yes...

Joe: That just means that if  the gumball machine is in the “No Quarter” state and you put a quarter in, it will 
change to the “Has Quarter” state.  That’s the state transition.

Frank:  Oh, I see!  And if  I’m in the “Has Quarter” state, I can turn the crank and change to the “Gumball Sold” 
state, or eject the quarter and change back to the “No Quarter” state.

Anne:  You got it!

Frank:  This doesn’t look too bad then. We’ve obviously got four states, and I think we also have four actions: “inserts 
quarter,” “ejects quarter,” “turns crank” and “dispense.”   But... when we dispense, we test for zero or more gumballs 
in the “Gumball Sold” state, and then either go to the “Out of  Gumballs” state or the “No Quarter” state.  So we 
actually have five transitions from one state to another.

Anne:  That test for zero or more gumballs also implies we’ve got to keep track of  the number of  gumballs too.  Any 
time the machine gives you a gumball, it might be the last one, and if  it is, we need to transition to the “Out of  
Gumballs” state.

Joe:  Also, don’t forget that you could do nonsensical things, like try to eject the quarter when the gumball machine 
is in the “No Quarter” state, or insert two quarters.

Frank:  Oh, I didn’t think of  that; we’ll have to take care of  those too.

Joe:  For every possible action we’ll just have to check to see which state we’re in and act appropriately.  We can do 
this!  Let’s start mapping the state diagram to code...

Joe
Anne

Frank

Download at WoweBook.Com



388 Chapter 10

State machines 101 

inserts quarter
ejects quarter

turns crank
These actions are 
the gumball machine’s 
interface - the things 
you can do with it.

How are we going to get from that state diagram to actual code?  Here’s a quick 
introduction to implementing state machines:

First, gather up your states:1

Gumball 

  Sold   No 

Quarter

   Has 
Quarter

Out of 
Gumballs

Here are the states - four in total.

Next, create an instance variable to hold the current state, and define values for each of  the states:2

final static int SOLD_OUT = 0;
final static int NO_QUARTER = 1;
final static int HAS_QUARTER = 2;
final static int SOLD = 3;
 
int state = SOLD_OUT;

Here’s each state represented 
as a unique integer...

...and here’s an instance variable that holds the 
current state.  We’ll go ahead and set it to 

“Sold Out” since the machine will be unfilled when 
it’s first taken out of its box and turned on.

Now we gather up all the actions that can happen in the system:3

Looking at the diagram, invoking any of these 

actions causes a state transition.

dispense

Dispense is more of an internal 
action the machine invokes on itself.

Let’s just call “Out of Gumballs” 
“Sold Out” for short.

review of state machines

Download at WoweBook.Com



the state pattern

you are here 4 389

Now we create a class that acts as the state machine.  For each action, 
we create a method that uses conditional statements to determine 
what behavior is appropriate in each state.  For instance, for the insert 
quarter action, we might write a method like this:

4

    public void insertQuarter() {

        if (state == HAS_QUARTER) {

            System.out.println(“You can’t insert another quarter”);

        } else if (state == SOLD_OUT) {

            System.out.println(“You can’t insert a quarter, the machine is sold out”);

        } else if (state == SOLD) {

            System.out.println(“Please wait, we’re already giving you a gumball”);

        } else if (state == NO_QUARTER) {

            state = HAS_QUARTER;
            System.out.println(“You inserted a quarter”);

        }
    }

Here we’re talking 
about a common technique: 
modeling state within an object 

by creating an instance variable to hold 
the state values and writing conditional 
code within our methods to handle 

the various states.

Each possible 
state is checked 
with a conditional 
statement...

...but can also transition to other 
states, just as depicted in the diagram.

With that quick review, let’s go implement the Gumball Machine!

...and exhibits the a
ppropriate 

behavior for each p
ossible state...

Download at WoweBook.Com



390 Chapter 10

public class GumballMachine {
 
    final static int SOLD_OUT = 0;
    final static int NO_QUARTER = 1;
    final static int HAS_QUARTER = 2;
    final static int SOLD = 3;
 
    int state = SOLD_OUT;
    int count = 0;
  
    public GumballMachine(int count) {
        this.count = count;
        if (count > 0) {
            state = NO_QUARTER;
        }
    }
  
 
 
  
  
    public void insertQuarter() {
        if (state == HAS_QUARTER) {
            System.out.println(“You can’t insert another quarter”);
        } else if (state == NO_QUARTER) {
            state = HAS_QUARTER;
            System.out.println(“You inserted a quarter”);
        } else if (state == SOLD_OUT) {
            System.out.println(“You can’t insert a quarter, the machine is sold out”);
        } else if (state == SOLD) {
            System.out.println(“Please wait, we’re already giving you a gumball”);
        }
    }
   

Writing the code

Here are the four stat
es; they match the 

states in Mighty Gumball’s state diagram.

Here’s the instance variable that is going t
o 

keep track of the current state we’re in.  

We start in the SOLD_OUT state.

We have a second instance variable that keeps track of the number of gumballs in the machine.

The constructor takes an initial 
inventory of gumballs.  If the inventory isn’t zero, the machine enters state 
NO_QUARTER, meaning it is waiting for someone to insert a quarter, otherwise it stays in the SOLD_OUT state.

Now we start implementing 

the actions as methods....
When a quarter is inserted, if....

a quarter is already inserted 
we tell the customer;

otherwise we accept the 
quarter and transition to the 
HAS_QUARTER state.

and if the machine is sold 
out, we reject the quarter.

It’s time to implement the Gumball Machine.  We know we’re going to have an instance 
variable that holds the current state.  From there, we just need to handle all the actions, 
behaviors and state transitions that can happen.  For actions, we need to implement inserting 
a quarter, removing a quarter, turning the crank and dispensing a gumball; we also have the 
empty gumball condition to implement as well.  

If the customer just bought a 
gumball he needs to wait until the 
transaction is complete before 
inserting another quarter.

implement the gumball machine

Download at WoweBook.Com



the state pattern

you are here 4 391

 
 
    public void ejectQuarter() {
        if (state == HAS_QUARTER) {
            System.out.println(“Quarter returned”);
            state = NO_QUARTER;
        } else if (state == NO_QUARTER) {
            System.out.println(“You haven’t inserted a quarter”);
        } else if (state == SOLD) {
            System.out.println(“Sorry, you already turned the crank”);
        } else if (state == SOLD_OUT) {
            System.out.println(“You can’t eject, you haven’t inserted a quarter yet”);
        }
    }
 

 
 
    public void turnCrank() {
        if (state == SOLD) {
            System.out.println(“Turning twice doesn’t get you another gumball!”);
        } else if (state == NO_QUARTER) {
            System.out.println(“You turned but there’s no quarter”);
        } else if (state == SOLD_OUT) {
            System.out.println(“You turned, but there are no gumballs”);
        } else if (state == HAS_QUARTER) {
            System.out.println(“You turned...”);
            state = SOLD;
            dispense();
        }
    }
 
    public void dispense() {
        if (state == SOLD) {
            System.out.println(“A gumball comes rolling out the slot”);
            count = count - 1;
            if (count == 0) {
                System.out.println(“Oops, out of gumballs!”);
                state = SOLD_OUT;
            } else {
                state = NO_QUARTER;
            }
        } else if (state == NO_QUARTER) {
            System.out.println(“You need to pay first”);
        } else if (state == SOLD_OUT) {
            System.out.println(“No gumball dispensed”);
        } else if (state == HAS_QUARTER) {
            System.out.println(“No gumball dispensed”);
        }
    }
 
    // other methods here like toString() and refill()
}

Now, if the customer tries to remove the quarter...
If there is a quarter, we 
return it and go back to 
the NO_QUARTER state.

If the customer just 
turned the crank, we can’t 
give a refund; he already 
has the gumball!

Otherwise, if there isn’t 
one we can’t give it back.

The customer tries to turn the crank...

We can’t deliver 
gumballs; there 
are none.

We need a 
quarter first.

Success! They get a gumball.  Change 
the state to SOLD and call the 
machine’s dispense() method.

Someone’s trying to cheat the machine.

You can’t eject if the machine is sold 
out, it doesn’t accept quarters!

Called to dispense a gumball.

Here’s where we handle the 

“out of gumballs” condition: 

If this was the last one, we 

set the machine’s state to 

SOLD_OUT; otherwise, we’re 

back to not having
 a quarter.

We’re in the 
SOLD state; give 

‘em a gumball!

None of these should 
ever happen, but if 
they do, we give ‘em an 
error, not a gumball.

Download at WoweBook.Com



392 Chapter 10

In-house testing

That feels like a nice solid design using a well-thought out methodology doesn’t 
it?  Let’s do a little in-house testing before we hand it off  to Mighty Gumball to 
be loaded into their actual gumball machines.  Here’s our test harness:

public class GumballMachineTestDrive {
    public static void main(String[] args) {
        GumballMachine gumballMachine = new GumballMachine(5);

        System.out.println(gumballMachine);

        gumballMachine.insertQuarter();
        gumballMachine.turnCrank();

        System.out.println(gumballMachine);

        gumballMachine.insertQuarter();
        gumballMachine.ejectQuarter();
        gumballMachine.turnCrank();

        System.out.println(gumballMachine);

        gumballMachine.insertQuarter();
        gumballMachine.turnCrank();
        gumballMachine.insertQuarter();
        gumballMachine.turnCrank();
        gumballMachine.ejectQuarter();

        System.out.println(gumballMachine);

        gumballMachine.insertQuarter();
        gumballMachine.insertQuarter();
        gumballMachine.turnCrank();
        gumballMachine.insertQuarter();
        gumballMachine.turnCrank();
        gumballMachine.insertQuarter();
        gumballMachine.turnCrank();

        System.out.println(gumballMachine);
    }
}

test the gumball machine

Load it up with 
five gumballs total.

Print out the state of the machine.
Throw a quarter in...

Turn the crank; we should get our gumball.

Print out the state of the machine, again.

Throw a quarter in...
Ask for it back.

Turn the crank; we shouldn’t get our gumball.

Print out the state of the machine, again.

Throw a quarter in...
Turn the crank; we should get our gumball
Throw a quarter in...
Turn the crank; we should get our gumball
Ask for a quarter back we didn’t put in.

Print out the state of the machine, again.

Throw TWO quarters in...
Turn the crank; we should get our gumball.

Now for the stress testing...

Print that machine state one more time.

Download at WoweBook.Com



the state pattern

you are here 4 393

File  Edit   Window  Help  mightygumball.com

%java GumballMachineTestDrive
Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 5 gumballs
Machine is waiting for quarter

You inserted a quarter
You turned...
A gumball comes rolling out the slot

Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 4 gumballs
Machine is waiting for quarter

You inserted a quarter
Quarter returned
You turned but there’s no quarter

Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 4 gumballs
Machine is waiting for quarter

You inserted a quarter
You turned...
A gumball comes rolling out the slot
You inserted a quarter
You turned...
A gumball comes rolling out the slot
You haven’t inserted a quarter

Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 2 gumballs
Machine is waiting for quarter

You inserted a quarter
You can’t insert another quarter
You turned...
A gumball comes rolling out the slot
You inserted a quarter
You turned...
A gumball comes rolling out the slot
Oops, out of gumballs!
You can’t insert a quarter, the machine is sold out
You turned, but there are no gumballs

Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 0 gumballs
Machine is sold out

Download at WoweBook.Com



394 Chapter 10

Be a Winner!

One in Ten 

get a FREE 

GUMBALL

You knew it was coming... a change request!

Mighty Gumball, Inc. has loaded your code into their new-
est machine and their quality assurance experts are putting 
it through its paces.  So far, everything’s looking great from 
their perspective.

In fact, things have gone so smoothly they’d like to take 
things to the next level...

Be a Winner!

One in Ten 

get a FREE 

GUMBALL

We think that by turning 
“gumball buying” into a game we 

can signifi cantly increase our 
sales.  We’re going to put one of 
these stickers on every machine.  

We’re so glad we’ve got Java 
in the machines because this is 

going to be easy, right?

CEO, Mighty 
Gumball, Inc.

JawBreaker or 
Gumdrop?

10% of the time, 

when the crank 
is turned, the 
customer gets two 

gumballs instead 

of one.

gumball buying game

Gumballs

Download at WoweBook.Com



the state pattern

you are here 4 395

Draw a state diagram for a Gumball Machine that handles the 1 in 10 
contest.  In this contest, 10% of the time the Sold state leads to two 
balls being released, not one. Check your answer with ours (at the 
end of the chapter) to make sure we agree before you go further...

Mighty Gumball, Inc.
Where the Gumball Machine 

is Never Half Empty

Use Mighty Gumball’s stationary to draw your state diagram.

  Design Puzzle

Download at WoweBook.Com



396 Chapter 10

public void insertQuarter() {
    // insert quarter code here
}

public void ejectQuarter() {
    // eject quarter code here
}

public void turnCrank() {
    // turn crank code here
}

public void dispense() {
    // dispense code here
}

The messy STATE of things...

Just because you’ve written your gumball machine using a well-thought out methodology doesn’t 
mean it’s going to be easy to extend.  In fact, when you go back and look at your code and think 
about what you’ll have to do to modify it, well...

final static int SOLD_OUT = 0;
final static int NO_QUARTER = 1;
final static int HAS_QUARTER = 2;
final static int SOLD = 3;

First, you’d have to add a new WINNER state 

here.  That isn’t too bad...

... but then, you’d have to add a new conditional in 
every single method to handle the WINNER state; 
that’s a lot of code to modify.

turnCrank() will get especially messy, because 
you’d have to add code to check to see whether 
you’ve got a WINNER and then switch to either 
the WINNER state or the SOLD state.

Sharpen your pencil

❏   A. This code certainly isn’t adhering to the 
Open Closed Principle.

❏   B. This code would make a FORTRAN 
programmer proud.

❏   C. This design isn’t even very object 
oriented.

❏   C. State transitions aren’t explicit; they 
are buried in the middle of  a bunch of  
conditional statements.

❏   D. We haven’t encapsulated anything that 
varies here.                

❏   E. Further additions are likely to cause bugs 
in working code.

Which of  the following describe the state of  our implementation?  
(Choose all that apply.)

things get messy

Download at WoweBook.Com



the state pattern

you are here 4 397

Okay, this isn’t good.  I think 
our first version was great, but 

it isn’t going to hold up over time as Mighty 
Gumball keeps asking for new behavior.  The 
rate of bugs is just going to make us look 

bad, not to mention that CEO will drive 
us crazy.

Joe:  You’re right about that!  We need to refactor this code so that it’s easy 
to maintain and modify.

Anne: We really should try to localize the behavior for each state so that if  
we make changes to one state, we don’t run the risk of  messing up the other 
code.

Joe:  Right; in other words, follow that ol’ “encapsulate what varies” 
principle.  

Anne:  Exactly.

Joe:  If  we put each state’s behavior in its own class, then every state just 
implements its own actions.

Anne:  Right. And maybe the Gumball Machine can just delegate to the 
state object that represents the current state.

Joe:  Ah, you’re good: favor composition... more principles at work.

Anne:  Cute.  Well, I’m not 100% sure how this is going to work, but I think 
we’re on to something.

Joe:  I wonder if  this will this make it easier to add new states?

Anne:  I think so...  We’ll still have to change code, but the changes will be 
much more limited in scope because adding a new state will mean we just 
have to add a new class and maybe change a few transitions here and there.

Joe:  I like the sound of  that.  Let’s start hashing out this new design!

Download at WoweBook.Com



398 Chapter 10

The new design

1

2

3

First, we’re going to define a State interface that 
contains a method for every action in the Gumball 
Machine.

Then we’re going to implement a State class for 
every state of the machine. These classes will be 
responsible for the behavior of the machine when it 
is in the corresponding state.

Finally, we’re going to get rid of all of our conditional 
code and instead delegate to the state class to do 
the work for us.

It looks like we’ve got a new plan: instead of  maintaining our existing code, we’re going to 
rework it to encapsulate state objects in their own classes and then delegate to the current 
state when an action occurs.  

We’re following our design principles here, so we should end up with a design that is easier to 
maintain down the road. Here’s how we’re going to do it:

Not only are we following design principles, as you’ll see, we’re actually implementing the 
State Pattern.  But we’ll get to all the official State Pattern stuff  after we rework our code...

a new state design

Now we’re going 
put all the behavior of a 

state into one class.  That way, 
we’re localizing the behavior and 

making things a lot easier to 
change and understand.

Download at WoweBook.Com



the state pattern

you are here 4 399

Defining the State interfaces and classes

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

<<interface>>
State

HasQuarterState
insertQuarter()

ejectQuarter()

turnCrank()

dispense()

NoQuarterState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

SoldOutState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

public class GumballMachine {
 
    fi nal static int SOLD_OUT = 0;
    fi nal static int NO_QUARTER = 1;
    fi nal static int HAS_QUARTER = 2;
    fi nal static int SOLD = 3;
 
    int state = SOLD_OUT;
    int count = 0;

... and we map each state 
directly to a class. 

Here’s the interface for all states.  The methods map directly 

to actions that could happen to the Gumball Machine (these are 

the same methods as in the previous code).

First let’s create an interface for State, which all our states implement:

To figure out what 
states we need, we look 
at our previous code...

Then take each state in our design 
and  encapsulate it in a class that 
implements the State interface.

SoldState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

WinnerState

insertQuarter()
ejectQuarter()
turnCrank()
dispense()

Don’t forget, we need a new “winner” state too 
that implements the state interface.  We’ll come 
back to this after we reimplement the first 
version of the Gumball Machine.

Download at WoweBook.Com



400 Chapter 10

 Sharpen your pencil
To implement our states, we fi rst need  to specify the behavior of the classes 
when each action is called.  Annotate the diagram below with the behavior of 
each action in each class; we’ve already fi lled in a few for you.

what are all the states?

Go to HasQuarterState
Tell the customer, “You haven’t inserted a quarter.”

Tell the customer, “Please wait, we’re already giving you a gumball.”

Tell the customer, “There are no gumballs.”

Go to SoldState

NoQuarterState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

SoldOutState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

SoldState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

HasQuarterState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

Dispense one gumball. Check number of gumballs; if > 0, go 
to NoQuarterState, otherwise, go to SoldOutState

WinnerState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

Go ahead and fill this out even though we’re implementing it later.

Download at WoweBook.Com



the state pattern

you are here 4 401

Implementing our State classes

public class NoQuarterState implements State {
    GumballMachine gumballMachine;
 
    public NoQuarterState(GumballMachine gumballMachine) {
        this.gumballMachine = gumballMachine;
    }
 
    public void insertQuarter() {
        System.out.println(“You inserted a quarter”);
        gumballMachine.setState(gumballMachine.getHasQuarterState());
    }
 
    public void ejectQuarter() {
        System.out.println(“You haven’t inserted a quarter”);
    }
 
    public void turnCrank() {
        System.out.println(“You turned, but there’s no quarter”);
     }
 
    public void dispense() {
        System.out.println(“You need to pay first”);
    } 
}

Time to implement a state: we know what behaviors we want; we just need to get it down in code.  We’re going to 
closely follow the state machine code we wrote, but this time everything is broken out into different classes.  

Let’s start with the NoQuarterState:

First we need to implement the State interface.
We get passed a reference to 
the Gumball Machine through the 
constructor.  We’re just going to 
stash this in an instance variable.

If someone inserts a quarter, 
we print a message saying the 
quarter was accepted and then 
change the machine’s state to 
the HasQuarterState.

You can’t get money 
back if you never gave 
it to us!

And, you can’t get a gumball 
if you don’t pay us.

What we’re doing is 
implementing the behaviors 

that are appropriate for the 
state we’re in.  In some cases, this 

behavior includes moving the 
Gumball Machine to a new state.

We can’t be dispensing 
gumballs without payment.

You’ll see how these 
work in just a sec...

Download at WoweBook.Com



402 Chapter 10

public class GumballMachine {
 
    State soldOutState;
    State noQuarterState;
    State hasQuarterState;
    State soldState;
 
    State state = soldOutState;
    int count = 0;
 

public class GumballMachine {
 
    fi nal static int SOLD_OUT = 0;
    fi nal static int NO_QUARTER = 1;
    fi nal static int HAS_QUARTER = 2;
    fi nal static int SOLD = 3;
 
    int state = SOLD_OUT;
    int count = 0;

In the GumballMachine, we update the 

code to use the new classes rather than 

the static integers.  The code is quite 

similar, except that in one c
lass we have 

integers and in the other
 objects...

Before we finish the State classes, we’re going to rework the Gumball Machine – that way 
you can see how it all fits together.   We’ll start with the state-related instance variables 
and switch the code from using integers to using state objects:

Reworking the Gumball Machine

Old code

New code

All the State objects are created 
and assigned in the constructor. This now holds a 

State object, not 
an integer.

state objects in the gumball machine

Download at WoweBook.Com



the state pattern

you are here 4 403

public class GumballMachine {
 
    State soldOutState;
    State noQuarterState;
    State hasQuarterState;
    State soldState;
 
    State state = soldOutState;
    int count = 0;
 
    public GumballMachine(int numberGumballs) {
        soldOutState = new SoldOutState(this);
        noQuarterState = new NoQuarterState(this);
        hasQuarterState = new HasQuarterState(this);
        soldState = new SoldState(this);
        this.count = numberGumballs;
        if (numberGumballs > 0) {
            state = noQuarterState;
        } 
    }
 
    public void insertQuarter() {
        state.insertQuarter();
    }
 
    public void ejectQuarter() {
        state.ejectQuarter();
    }
 
    public void turnCrank() {
        state.turnCrank();
        state.dispense();
    }

    void setState(State state) {
        this.state = state;
    }
 
    void releaseBall() {
        System.out.println(“A gumball comes rolling out the slot...”);
        if (count != 0) {
            count = count - 1;
        }
    }

    // More methods here including getters for each State...
}

Now, let’s look at the complete GumballMachine class...

Here are all the States ag
ain...

...and the State instance variable.
The count instance variable holds the count of gumballs – initially the machine is empty.

Our constructor takes the
 

initial number of gumballs and 

stores it in an instance v
ariable.

It  also creates the Stat
e 

instances, one of each.

If there are more than 0 
gumballs we set the state to the NoQuarterState.

Now for the actions
.  These are 

VERY EASY to implement now.  We 

just delegate to
 the current sta

te.

Note that we don’t need an 
action method for dispense() in 
GumballMachine because it’s just an 
internal action; a user can’t ask the 
machine to dispense directly. But we 
do call dispense() on the State object 
from the turnCrank() method.

The machine supports a releaseBall() 
helper method that releases the ball and 
decrements the count instance variable.

This method allows other objects (like 
our State objects) to transition the 
machine to a different state.

This includes methods like getNoQuarterState() for getting each 
state object, and getCount() for getting the gumball count.

Download at WoweBook.Com



404 Chapter 10

public class HasQuarterState implements State {
    GumballMachine gumballMachine;
 
    public HasQuarterState(GumballMachine gumballMachine) {
        this.gumballMachine = gumballMachine;
    }
  
    public void insertQuarter() {
        System.out.println(“You can’t insert another quarter”);
    }
 
    public void ejectQuarter() {
        System.out.println(“Quarter returned”);
        gumballMachine.setState(gumballMachine.getNoQuarterState());
    }
 
    public void turnCrank() {
        System.out.println(“You turned...”);
        gumballMachine.setState(gumballMachine.getSoldState());
    }
    public void dispense() {
        System.out.println(“No gumball dispensed”);
    }
}

Implementing more states
Now that you’re starting to get a feel for how the Gumball Machine and the states 
fit together, let’s implement the HasQuarterState and the SoldState classes...

An inappropriate 

action for this 
state.

Another 
inappropriate 
action for this 
state.

Return the customer’s 
quarter and 
transition back to the 
NoQuarterState.

When the crank is 
turned we transition 
the machine to the 
SoldState state by 
calling its setState() 
method and passing it 
the SoldState object.  
The SoldState object 
is retrieved by the 
getSoldState() 
getter method  
(there is one of these 
getter methods for 
each state).

When the state is 
instantiated 

we pass it a refer
ence to the 

GumballMachine. This is used 

to transition th
e machine to a 

different state.

more states for the gumball machine

Download at WoweBook.Com



the state pattern

you are here 4 405

public class SoldState implements State {
    //constructor and instance variables here
 
    public void insertQuarter() {
        System.out.println(“Please wait, we’re already giving you a gumball”);
    }
 
    public void ejectQuarter() {
        System.out.println(“Sorry, you already turned the crank”);
    }
 
    public void turnCrank() {
        System.out.println(“Turning twice doesn’t get you another gumball!”);
    }
 
    public void dispense() {
        gumballMachine.releaseBall();
        if (gumballMachine.getCount() > 0) {
            gumballMachine.setState(gumballMachine.getNoQuarterState());
        } else {
            System.out.println(“Oops, out of gumballs!”);
            gumballMachine.setState(gumballMachine.getSoldOutState());
        }
    }
}

Now, let’s check out the SoldState class...
Here are all the 
inappropriate 
actions for this 
state

And here’s where the 

real work begins... We’re in the SoldS
tate, which 

means the customer paid.  So, 

we first need to 
ask the 

machine to release
 a gumball.

Then we ask the machine what 

the gumball count is, and
 either 

transition to the
 NoQuarterState 

or the SoldOutState.

Look back at the GumballMachine implementation.  If the crank is turned and not successful (say 
the customer didn’t insert a quarter first), we call dispense anyway, even though it’s unnecessary.  
How might you fix this?

brain
powerA

Download at WoweBook.Com



406 Chapter 10

Sharpen your pencil
We have one remaining class we haven’t implemented: SoldOutState.  
Why don’t you implement it? To do this, carefully think through how 
the Gumball Machine should behave in each situation.  Check your 
answer before moving on...

public class SoldOutState implements State       {
    GumballMachine gumballMachine;
 
    public SoldOutState(GumballMachine gumballMachine) {

    }
 
    public void insertQuarter() {

    }
 
    public void ejectQuarter() {

    }

    public void turnCrank() {

    }

    public void dispense() {

    }

}

your turn to implement a state

Download at WoweBook.Com



the state pattern

you are here 4 407

For starters, you now have a Gumball Machine implementation that is structurally quite different from your 
fi rst version, and yet functionally it is exactly the same.  By structurally changing the implemention you’ve:

Now let’s look a little more at the functional aspect of  what we did:

Let’s take a look at what we’ve done so far...

Gumball Machine States

ß Localized the behavior of  each state into its own class.

ß Removed all the troublesome if statements that would have been diffi cult to maintain.

ß  Closed each state for modifi cation, and yet left the Gumball Machine open to extension by 
adding new state classes (and we’ll do this in a second).

ß Created a code base and class structure that maps much more closely to the Mighty Gumball 
diagram and is easier to read and understand.

      SoldOut

    NoQuarter

    HasQuarterrtererre

        SoldS ld

GumballMachine

current state

The Gumball Machine now holds an 

instance of each
 State class.

The current state of the 
machine is always one of 
these class instances.

oQuQuuQ auaau rte

SoldOdOOd ut

Download at WoweBook.Com



408 Chapter 10

      SoldOutoldOu

    NoQuarterQuarter

    HasQuarterasassa QsQQs uQuuQ auaau rtererre

        SoldSold

GumballMachine

Gumball Machine States

current state

turnCrank()

      SoldOutoldOut

    NoQuarterQuar er

GumballMachine

    HasQuarterasassa QsQQs uQuuQ auaau rtererre

        SoldSold

Gumball Machine States

current state

When an action is called, it is 
delegated to the current state.

In this case the turnCrank() 
method is being called when the 
machine is in the HasQuarter 
state, so as a result  the machine 
transitions to the Sold state.

....and then the 
machine will 
either go to 
the SoldOut 
or NoQuarter 
state depending 
on the number of 
gumballs remaining 
in the machine.

The machine enters 

the Sold state 
and a 

gumball is dispensed
...

turnCrank()

more gumballs

sold out

TRANSITION TO SOLD STATE

dispense()

state transitions

NoQQuQuuQ auaau rter

SooldOdOOd ut

NoQQuQuuQ auaau rte

SooldOdOOd ut

Download at WoweBook.Com



the state pattern

you are here 4 409

      SoldOut

      SoldOut

    NoQuarter

    HasQuarterasassa QsQQs uQuuQ auaau rtererre

        SoldSold

GumballMachine

Gumball Machine States

    NoQuarterr

    HasQuarterasassa QsQQs uQuuQ auaau rtererre

        SoldSold

GumballMachine

Gumball Machine States

      SoldOut

    NoQuarter

    HasQuarterasassa QsQQs uQuuQ auaau rtererre

        SoldSold

GumballMachine

GumballMachine

Gumball Machine States

      SoldOut

    NoQuarter

    HasQuarterasassa QsQQs uQuuQ auaau rtererre

        SoldSold

Gumball Machine States

1 2

43

Behind the Scenes: 
Self-Guided Tour

Trace the steps of the Gumball Machine starting with the NoQuarter state.  Also annotate the diagram with actions 
and  output of the machine. For this exercise you can assume there are plenty of gumballs in the machine.

Sharpen your pencil

NNoQQuQuuQ auaau rter

SSooldOdOOd ut

NoQQuQuuQ auaau rter

SooldOdOOd ut

NoQQuQuuQ auaau rter

SooldOdOOd ut

NoQQuQuuQ auaau rter

SooldOdOOd ut

Download at WoweBook.Com



410 Chapter 10

The  State Pattern   defined

The State Pattern allows an object to alter its behavior 
when its internal state changes.  The object will appear to 
change its class.

request()

Context

Yes, it’s true, we just implemented the State Pattern!  So now, let’s take a look at what it’s all about:

The fi rst part of  this description makes a lot of  sense, right?  Because the pattern encapsulates state into 
separate classes and delegates to the object representing the current state, we know that behavior changes 
along with the internal state.  The Gumball Machine provides a good example: when the gumball machine 
is in the NoQuarterState and you insert a quarter, you get different behavior (the machine accepts the 
quarter) than if  you insert a quarter when it’s in the HasQuarterState (the machine rejects the quarter).

What about the second part of  the defi nition?  What does it mean for an object to “appear to change its 
class?”  Think about it from the perspective of  a client: if  an object you’re using can completely change its 
behavior, then it appears to you that the object is actually instantiated from another class.  In reality, however, 
you know that we are using composition to give the appearance of  a class change by simply referencing  
different state objects.

Okay, now it’s time to check out the State Pattern class diagram:

state.handle()

handle()

State

handle()

ConcreteStateA
handle()

ConcreteStateB
Many concrete states are possible.

The Context is the class that  
can have a number of internal 
states.  In our example, the 
GumballMachine is the Context.

Whenever the request() is made on the Context it is delegated to the state to handle.

The State interface defines a common interface for all concrete states;  the states all implement the same interface, so they are interchangeable.

ConcreteStates handle requests from the 

Context. Each ConcreteState provides its 

own implementation for a request.  In this 

way, when the Context changes state, its 

behavior will change as well.

state pattern defi ned

Download at WoweBook.Com



the state pattern

you are here 4 411

Wait a sec, 
from what I remember 

of the Strategy Pattern, 
this class diagram is 
EXACTLY the same.

You’ve got a good eye!  Yes, the class diagrams are essentially the 
same, but the two patterns differ in their intent. 

With the State Pattern, we have a set of  behaviors encapsulated in 
state objects; at any time the context is delegating to one of  those 
states. Over time, the current state changes across the set of  state 
objects to reflect the internal state of  the context, so the context’s 
behavior changes over time as well.  The client usually knows very 
little, if  anything, about the state objects.  

With Strategy, the client usually specifies the strategy object that 
the context is composed with. Now, while the pattern provides the 
flexibility to change the strategy object at runtime, often there is a 
strategy object that is most appropriate for a context object.  For 
instance, in Chapter 1, some of  our ducks were configured to fly 
with typical flying behavior (like mallard ducks), while others were 
configured with a fly behavior that kept them grounded (like rubber 
ducks and decoy ducks).

In general, think of  the Strategy Pattern as a flexible alternative to 
subclassing;  if  you use inheritance to define the behavior of  a class, 
then you’re stuck with that behavior even if  you need to change it. 
With Strategy you can change the behavior by composing with a 
different object.

Think of  the State Pattern as an alternative to putting lots of  
conditionals in your context; by encapsulating the behaviors within 
state objects, you can simply change the state object in context to 
change its behavior.

Download at WoweBook.Com



412 Chapter 10

Q: In the GumballMachine, the states decide 
what the next state should be.  Do the ConcreteStates 
always decide what state to go to next? 

A: No, not always.  The alternative is to let the Context 
decide on the flow of state transitions.  

As a general guideline, when the state transitions are fixed 
they are appropriate for putting in the Context; however, 
when the transitions are more dynamic, they are typically 
placed in the state classes themselves (for instance, in the 
GumballMachine the choice of the transition to NoQuarter or 
SoldOut depended on the runtime count of gumballs).

The disadvantage of having state transitions in the state 
classes is that we create dependencies between the state 
classes. In our implementation of the GumballMachine 
we tried to minimize this by using getter methods on the 
Context, rather than hardcoding explicit concrete state 
classes.

Notice that by making this decision, you are making a 
decision as to which classes are closed for modification 
– the Context or the state classes – as the system evolves.

Q: Do clients ever interact directly with the 
states?

A: No.  The states are used by the Context to 
represent its internal state and behavior, so all requests 
to the states come from the Context.  Clients don’t directly 
change the state of the Context.  It is the Context’s job 
to oversee its state, and you don’t usually want a client 
changing the state of a Context without that Context’s 
knowledge.

Q: If I have lots of instances of the Context in my 
application, is it possible to share the state objects 
across them?

A: Yes, absolutely, and in fact this is a very common 
scenario.  The only requirement is that your state objects do 
not keep their own internal state; otherwise, you’d need a 

unique instance per context.

To share your states, you’ll typically assign each state to a 
static instance variable.  If your state needs to make use of 
methods or instance variables in your Context, you’ll also 
have to give it a reference to the Context in each handler() 
method.

Q: It seems like using the State Pattern always 
increases the number of classes in our designs.  Look 
how many more classes our GumballMachine had 
than the original design! 

A: You’re right, by encapsulating state behavior 
into separate state classes, you’ll always end up with 
more classes in your design.  That’s often the price you 
pay for flexibility.  Unless your code is some “one off” 
implementation you’re going to throw away (yeah, right), 
consider building it with the additional classes and you’ll 
probably thank yourself down the road.  Note that often 
what is important is the number of classes that you expose 
to your clients, and there are ways to hide these extra 
classes from your clients (say, by declaring them package 
visible).

Also, consider the alternative: if you have an application 
that has a lot of state and you decide not to use separate 
objects, you’ll instead end up with very large, monolithic 
conditional statements. This makes your code hard to 
maintain and understand.  By using objects, you make 
states explicit and reduce the effort needed to understand 
and maintain your code. 

Q: The State Pattern class diagram shows 
that State is an abstract class.  But didn’t you use 
an interface in the implementation of the gumball 
machine’s state?

A: Yes.  Given we had no common functionality to 
put into an abstract class, we went with an interface.  In 
your own implementation, you might want to consider an 
abstract class.  Doing so has the benefit of allowing you to 
add methods to the abstract class later, without breaking the 
concrete state implementations.

there are noDumb Questions

q&a about the state pattern

Download at WoweBook.Com



the state pattern

you are here 4 413

We still need to finish the Gumball 1 in 10 game

Remember, we’re not done yet.  We’ve got a game to implement; but now that we’ve got the State 
Pattern implemented, it should be a breeze.  First, we need to add a state to the GumballMachine class:

public class GumballMachine {
 
    State soldOutState;
    State noQuarterState;
    State hasQuarterState;
    State soldState;
    State winnerState;
 
    State state = soldOutState;
    int count = 0;

    // methods here
}

All you need to add here is the 
new WinnerState and initialize 
it in the constructor.

Now let’s implement the WinnerState class itself, it’s remarkably similar to the SoldState class:

public class WinnerState implements State {
 
    // instance variables and constructor
 
    // insertQuarter error message
 
    // ejectQuarter error message
 
    // turnCrank error message
 
    public void dispense() {
        System.out.println(“YOU’RE A WINNER! You get two gumballs for your quarter”);
        gumballMachine.releaseBall();
        if (gumballMachine.getCount() == 0) {
            gumballMachine.setState(gumballMachine.getSoldOutState());
        } else {
            gumballMachine.releaseBall();
            if (gumballMachine.getCount() > 0) {
                gumballMachine.setState(gumballMachine.getNoQuarterState());
            } else {
                System.out.println(“Oops, out of gumballs!”);
                gumballMachine.setState(gumballMachine.getSoldOutState());
            }
        }
    }
}

Here we release two gumballs and then 
either go to the NoQuarterState or the 

SoldOutState.

Just like SoldState.

As long as we 
have a second 
gumball we 
release it.

Don’t forget you also have 
to add a getter method for 
WinnerState too.

Download at WoweBook.Com



414 Chapter 10

public class HasQuarterState implements State {
    Random randomWinner = new Random(System.currentTimeMillis());
    GumballMachine gumballMachine;
 
    public HasQuarterState(GumballMachine gumballMachine) {
        this.gumballMachine = gumballMachine;
    }
  
    public void insertQuarter() {
        System.out.println(“You can’t insert another quarter”);
    }
 
    public void ejectQuarter() {
        System.out.println(“Quarter returned”);
        gumballMachine.setState(gumballMachine.getNoQuarterState());
    }
 
    public void turnCrank() {
        System.out.println(“You turned...”);
        int winner = randomWinner.nextInt(10);
        if ((winner == 0) && (gumballMachine.getCount() > 1)) {
            gumballMachine.setState(gumballMachine.getWinnerState());
        } else {
            gumballMachine.setState(gumballMachine.getSoldState());
        }
    }
    public void dispense() {
        System.out.println(“No gumball dispensed”);
    }
}

First we add a 
random number 
generator to 
generate the 10% 
chance of winning...

Finishing the game

We’ve just got one more change to make: we need to implement the random 
chance game and add a transition to the WinnerState.  We’re going to add both to 
the HasQuarterState since that is where the customer turns the crank:

...then we determine 
if this customer won.

Wow, that was pretty simple to implement!  We just added a new state to the GumballMachine 
and then implemented it.  All we had to do from there was to implement our chance game and 
transition to the correct state.  It looks like our new code strategy is paying off...

If they won, and there’s 
enough gumballs left for 
them to get two, we 
go to the WinnerState; 
otherwise, we go to the 
SoldState (just like we 
always did).

implementing the 1 in 10 game

Download at WoweBook.Com



the state pattern

you are here 4 415

Demo for the CEO of Mighty Gumball, Inc.

public class GumballMachineTestDrive {
    public static void main(String[] args) {
        GumballMachine gumballMachine = new GumballMachine(5);

        System.out.println(gumballMachine);

        gumballMachine.insertQuarter();
        gumballMachine.turnCrank();

        System.out.println(gumballMachine);

        gumballMachine.insertQuarter();
        gumballMachine.turnCrank();
        gumballMachine.insertQuarter();
        gumballMachine.turnCrank();

        System.out.println(gumballMachine);
    }
}

The CEO of  Mighty Gumball has dropped by for a demo of  your new gumball game code.  Let’s 
hope those states are all in order!  We’ll keep the demo short and sweet (the short attention span of  
CEOs is well documented), but hopefully long enough so that we’ll win at least once.  

This code really hasn’t cha
nged at all; 

we just shortened it a bit
.

Once, again, start with a gumball 
machine with 5 gumballs.

We want to get a winning state, 
so we just keep pumping in those 
quarters and turning the crank.  We 
print out the state of the gumball 
machine every so often...

The whole engineering team is waiting 

outside the conference roo
m to see 

if the new State Pattern-based 

design is going to work!!

Download at WoweBook.Com



416 Chapter 10

File  Edit   Window  Help  Whenisagumballajawbreaker?

%java GumballMachineTestDrive
Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 5 gumballs
Machine is waiting for quarter

You inserted a quarter
You turned...
YOU’RE A WINNER! You get two gumballs for your quarter
A gumball comes rolling out the slot...
A gumball comes rolling out the slot...

Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 3 gumballs
Machine is waiting for quarter

You inserted a quarter
You turned...
A gumball comes rolling out the slot...
You inserted a quarter
You turned...
YOU’RE A WINNER! You get two gumballs for your quarter
A gumball comes rolling out the slot...
A gumball comes rolling out the slot...
Oops, out of gumballs!

Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 0 gumballs
Machine is sold out
%

Yes! That rocks!

Gee, did we get lucky or what?  

In our demo to the CEO, we 

won not once, but twice!

Q: Why do we need the WinnerState?  Couldn’t we just have the SoldState dispense two gumballs?

A: That’s a great question.  SoldState and WinnerState are almost identical, except that WinnerState dispenses two 
gumballs instead of one.  You certainly could put the code to dispense two gumballs into the SoldState.  The downside 
is, of course, that now you’ve got TWO states represented in one State class: the state in which you’re a winner, and the 
state in which you’re not.  So you are sacrificing clarity in your State class to reduce code duplication.  Another thing to 
consider is the principle you learned in the previous chapter: One class, One responsibility.  By putting the WinnerState 
responsibility into the SoldState, you’ve just given the SoldState TWO responsibilities.  What happens when the 
promotion ends?  Or the stakes of the contest change?  So, it’s a tradeoff and comes down to a design decision.   

there are noDumb Questions

testing the gumball machine

Download at WoweBook.Com



the state pattern

you are here 4 417

Bravo!  Great job, 
gang.  Our sales are already going 
through the roof with the new game. 

You know, we also make soda machines, 
and I was thinking we could put one of 

those slot machine arms on the side and 
make that a game too.  We’ve got four 

year olds gambling with the gumball 
machines; why stop there?

Sanity check...

Yes, the CEO of  Mighty Gumball probably needs a sanity check, but that’s 
not what we’re talking about here.  Let’s think through some aspects of  the 
GumballMachine that we might want to shore up before we ship the gold version:

ß We’ve got a lot of  duplicate code in the Sold and Winning 
states and we might want to clean those up.  How would we 
do it?  We could make State into an abstract class and build in 
some default behavior for the methods; after all, error messages 
like, “You already inserted a quarter,” aren’t going to be seen 
by the customer.  So all “error response” behavior could be 
generic and inherited from the abstract State class.

ß The dispense() method always gets called, even if  the crank is 
turned when there is no quarter.  While the machine operates 
correctly and doesn’t dispense unless it’s in the right state, we 
could easily fix this by having turnCrank() return a boolean, 
or by introducing exceptions.  Which do you think is a better 
solution?

ß All of  the intelligence for the state transitions is in the State 
classes.  What problems might this cause?  Would we want to 
move that logic into the Gumball Machine?  What would be 
the advantages and disadvantages of  that?

ß Will you be instantiating a lot of  GumballMachine objects?  
If  so, you may want to move the state instances into static 
instance variables and share them.  What changes would this 
require to the GumballMachine and the States?

Dammit Jim, 
I’m a gumball 
machine, not a 
computer!

Download at WoweBook.Com



418 Chapter 10

Tonight:  A Strategy and State Pattern Reunion.

Strategy State

Hey bro. Did you hear I was in Chapter 1?

Yeah, word is definitely getting around.

I was just over giving the Template Method guys a 
hand – they needed me to help them finish off  their 
chapter.  So, anyway, what is my noble brother up 
to?

Same as always – helping classes to exhibit different 
behaviors in different states.

I don’t know, you always sound like you’ve just 
copied what I do and you’re using different words 
to describe it. Think about it: I allow objects to 
incorporate different behaviors or algorithms 
through composition and delegation. You’re just 
copying me.

I admit that what we do is definitely related, but my 
intent is totally different than yours.  And, the way I 
teach my clients to use composition and delegation 
is totally different.

Oh yeah? How so? I don’t get it. 

Well if  you spent a little more time thinking about 
something other than yourself, you might.  Anyway,  
think about how you work: you have a class you’re 
instantiating and you usually give it a strategy 
object that implements some behavior.  Like, in 
Chapter 1 you were handing out quack behaviors, 
right?  Real ducks got a real quack, rubber ducks 
got a quack that squeaked.

Yeah, that was some fine work... and I’m sure you 
can see how that’s more powerful than inheriting 
your behavior, right? Yes, of  course. Now, think about how I work; it’s 

totally different.

Sorry, you’re going to have to explain that.

fireside chats: state and strategy

Download at WoweBook.Com



the state pattern

you are here 4 419

Strategy State

Okay, when my Context objects get created, I may 
tell them the state to start in, but then they change 
their own state over time.

Hey, come on, I can change behavior at runtime 
too; that’s what composition is all about!

Sure you can, but the way I work is built around 
discrete states;  my Context objects change state 
over time according to some well defined state 
transitions.  In other words, changing behavior is 
built in to my scheme – it’s how I work!

Well, I admit, I don’t encourage my objects to have 
a well-defined set of  transitions between states.  In 
fact, I typically like to control what strategy my 
objects are using.

Look, we’ve already said we’re alike in structure, but 
what we do is quite different in intent. Face it, the 
world has uses for both of  us.

Yeah, yeah, keep living your pipe dreams brother.  
You act like you’re a big pattern like me, but check 
it out: I’m in Chapter 1; they stuck you way out in 
Chapter 10.  I mean, how many people are actually 
going to read this far? Are you kidding?  This is a Head First book and 

Head First readers rock.  Of  course they’re going to 
get to Chapter 10!

That’s my brother, always the dreamer.

Download at WoweBook.Com



420 Chapter 10

We almost forgot!

Mighty Gumball, Inc.
Where the Gumball Machine 

is Never Half Empty

Gumball 

  Sold

   No 
Quarter

   Has 
Quarter

Out of 
Gumballs

There’s one transition we forgot to put in the original spec... 

we need a way to refill the gumball machine when it’s out of 

gumballs!  Here’s the new diagram - can you implement it for us?  

You did such a good job on the rest of
 the gumball machine we 

have no doubt you can add this in a ji
ffy!

               - The Mighty Gumball Engineers
ins

er
ts 

qu
ar

te
r

eje
ct

s q
ua

rt
er

turns crank

dispense 
gumball

gumballs = 0

gumballs > 0

refill

refi ll exercise

Download at WoweBook.Com



the state pattern

you are here 4 421

Sharpen your pencil
We need you to write the refill() method for the Gumball machine.  It has one 
argument − the number of gumballs you’re adding to the machine − and should 
update the gumball machine count and reset the machine’s state.

You’ve done some amazing work! 
I’ve got some more ideas that 

are going to change the gumball 
industry and I need you to implement 
them.  Shhhhh!  I’ll let you in on these 
ideas in the next chapter.

Download at WoweBook.Com



422 Chapter 10

Match each pattern with its description:

Pattern Description

State

Strategy

Template Method

Encapsulate interchangeable 
behaviors and use delegation to 
decide which behavior to use

Subclasses decide how 
to implement steps in an 
algorithm

Encapsulate state-based 
behavior and delegate 
behavior to the current state

who does what?

Download at WoweBook.Com



the state pattern

you are here 4 423

Tools for your   Design Toolbox
It’s the end of another chapter; you’ve got enough 
patterns here to breeze through any job interview!

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Strategy - defines a fam
ily of algorith

ms, 

encapsulates e
ach one, and m

akes them 

interchangeab
le.  Strategy 

lets the algor
ithm 

vary independ
ently from clients that 

use it.

OO Patterns
Strategy
encapsulates e

ach one, and m
akes them 

interchangeab
le.  Strategy 

lets the algor
ithm 

vary independ
ently from clients that 

use it.

OO Patterns
Observer - defines a one

-to-many 

dependency be
tween objects so

 that 

when one object
 changes state

, all its 

dependents ar
e notified and

 updated 

automatically
interchangeab

le.  Strategy 
lets the algor

ithm 

vary independ
ently from clients that 

use it.

OO Patterns
Observer
dependency be

tween objects so
 that 

when one object
 changes state

, all its 

dependents ar
e notified and

 updated when one object
 changes state

, all its 

dependents ar
e notified and

 updated 

dependents ar
e notified and

 updated when one object
 changes state

, all its 

automatically

Decorator - Attach additio
nal 

responsibilities
 to an object 

dynamically.  

Decorators pro
vide a flexible

 

alternative to
 subclassing fo

r extending 

functionality.

OO Patterns
Observer defines a one-

to-many 

automatically

Decorator
responsibilities

 to an object 
dynamically.  

Decorators pro
vide a flexible

 responsibilities
 to an object 

dynamically.  

Decorators pro
vide a flexible

 
Decorators pro

vide a flexible
 responsibilities

 to an object 
dynamically.  

alternative to
 subclassing fo

r extending 

functionality.

Abstract Factory - Provide an 

interface for
 creating fam

ilies of 

related or de
pedent object

s without 

specifying the
ir concrete cl

asses.

OO Patterns
Observer defines a one-

to-many 

DecoratorAbstract Factory

interface for
 creating fam

ilies of Abstract Factory

interface for
 creating fam

ilies of 

interface for
 creating fam

ilies of Abstract Factory

related or de
pedent object

s without 

specifying the
ir concrete cl

asses.related or de
pedent object

s without 

specifying the
ir concrete cl

asses.
specifying the

ir concrete cl
asses.related or de

pedent object
s without Factory Method  - Define an 

interface for
 creating an o

bject, but 

let subclasses 
decide which class to 

instantiate.  F
actory Method lets 

a class defer 
instantiation 

to the 

subclasses.

Observer defines a one-
to-many 

DecoratorAbstract Factory

specifying the
ir concrete cl

asses.
Factory Method Define an 

interface for
 creating an o

bject, but Factory Method 

interface for
 creating an o

bject, but 

interface for
 creating an o

bject, but Factory Method 

let subclasses 
decide which class to 

instantiate.  F
actory Method lets 

a class defer 
instantiation 

to the instantiate.  F
actory Method lets 

a class defer 
instantiation 

to the 

a class defer 
instantiation 

to the instantiate.  F
actory Method lets 

subclasses.

Singleton - Ensure a class o
nly has 

one instance a
nd provide a g

lobal point 

of access to i
t.

DecoratorAbstract Factory
Factory Method Define an 

Singleton
one instance a

nd provide a g
lobal point 

of access to i
t.Command - Encapsulates a 

request 

as an object, 
thereby lettin

g you 

parameterize client
s with different

 

requests, queu
e or log reque

sts, and 

support undoa
ble operations

.

 BULLET POINTS

ß The State Pattern allows an 
object to have many different 
behaviors that are based on its 
internal state.

ß Unlike a procedural state 
machine, the State Pattern 
represents state as a full-blown 
class.

ß The Context gets its behavior 
by delegating to the current 
state object it is composed 
with.

ß By encapsulating each state 
into a class, we localize any 
changes that will need to be 
made.

ß The State and Strategy 
Patterns have the same class 
diagram, but they differ in 
intent.

ß Strategy Pattern typically 
configures Context classes 
with a behavior or algorithm.

ß State Pattern allows a Context 
to change its behavior as the 
state of the Context changes.

ß State transitions can be 
controlled by the State classes 
or by the Context classes.

ß Using the State Pattern will 
typically result in a greater 
number of classes in your 
design.

ß State classes may be shared 
among Context instances.

Factory Method 

SingletonCommand
as an object, 

thereby lettin
g you 

parameterize client
s with different

 
as an object, 

thereby lettin
g you 

parameterize client
s with different

 

parameterize client
s with different

 
as an object, 

thereby lettin
g you 

requests, queu
e or log reque

sts, and 

support undoa
ble operations

.

Adapter - Encapsulates a 
request 

as an object, 
thereby lettin

g you 

parameterize client
s with different

 

requests, queu
e or log reque

sts, and 

support undoa
ble operations

.

No new principles t
his 

chapter, tha
t gives you 

time to sleep on
 them.

Singleton

support undoa
ble operations

.

Adapter Encapsulates a 
request 

as an object, 
thereby lettin

g you 

parameterize client
s with different

 
as an object, 

thereby lettin
g you 

parameterize client
s with different

 

parameterize client
s with different

 
as an object, 

thereby lettin
g you 

requests, queu
e or log reque

sts, and 

support undoa
ble operations

.

Facade - Encapsulates a 
request 

as an object, 
thereby lettin

g you 

parameterize client
s with different

 

requests, queu
e or log reque

sts, and 

support undoa
ble operations

.

Here’s our new 
pattern.  If you’re 
managing state in 
a class, the State 
Pattern gives you 
a technique for 
encapsulating that 
state.

Adapter Encapsulates a 
request 

Facade - Encapsulates a 
request 

as an object, 
thereby lettin

g you 

parameterize client
s with different

 
as an object, 

thereby lettin
g you 

parameterize client
s with different

 

parameterize client
s with different

 
as an object, 

thereby lettin
g you 

requests, queu
e or log reque

sts, and 

support undoa
ble operations

.

State - Allow an object to 
alter its 

behavior when its intern
al state chang

es.  

The object will appear to c
hange its 

class.

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Encapsulate what varies.

Favor composition over i
nheritance.

Program to interfaces
, not 

implementations.

Strive for loo
sely coupled d

esigns 

between objects th
at interact.

Classes should b
e open for ex

tension 

but closed for
 modification.

Depend on abst
ractions. Do not 

depend on con
crete classes.

Only talk to yo
ur friends.

Don’t call us, w
e’ll call you.

A class should h
ave only one r

eason 

to change.

OO Principles

Download at WoweBook.Com



424 Chapter 10

Exercise solutions

Out of 
Gumballs

   Has 
Quarter

   No 

Quarter

ins
er

ts 
qu

ar
te

r

eje
ct

s q
ua

rt
er

turns crank, no winner

Winner

turns crank, we 
have a winner!

Mighty Gumball, Inc.
Where the Gumball Machine 

is Never Half Empty

Gumball 

  Sold
dispense 
gumball

gumballs = 0

gumballs > 0

gumballs = 0
gum

ba
lls 

> 0

dis
pen

se 
2 

gum
bal

ls

exercise solutions

Download at WoweBook.Com



the state pattern

you are here 4 425

Sharpen your pencil

❏   A. This code certainly isn’t adhering to the 
Open Closed Principle!

❏   B. This code would make a FORTRAN 
programmer proud.

❏   C. This design isn’t even very object 
oriented.

❏   C. State transitions aren’t explicit; they 
are buried in the middle of  a bunch of  
conditional code.

❏   D. We haven’t encapsulated anything that 
varies here.                

❏   E. Further additions are likely to cause bugs 
in working code.

Based on our first implementation, which of  the following apply?  
(Choose all that apply.)

Exercise solutions

Sharpen your pencil
We have one remaining class we haven’t implemented: SoldOutState.  
Why don’t you implement it? To do this, carefully think through how 
the Gumball Machine should behave in each situation.  Check your 
answer before moving on...

public class SoldOutState implements State {
    GumballMachine gumballMachine;
 
    public SoldOutState(GumballMachine gumballMachine) {
        this.gumballMachine = gumballMachine;
    }
 
    public void insertQuarter() {
        System.out.println(“You can’t insert a quarter, the machine is sold out”);
    }
 
    public void ejectQuarter() {
        System.out.println(“You can’t eject, you haven’t inserted a quarter yet”);
    }
 
    public void turnCrank() {
        System.out.println(“You turned, but there are no gumballs”);
    }
 
    public void dispense() {
        System.out.println(“No gumball dispensed”);
    }

In the Sold Out state, we really 

can’t do anything
 until someone 

refills the Gumball Machine.

}

Download at WoweBook.Com



426 Chapter 10

 Sharpen your pencil
To implement the states, we fi rst need to defi ne what the behavior will be 
when the corresponding action is called.  Annotate the diagram below with the 
behavior of each action in each class; we’ve already fi lled in a few for you.

Go to HasQuarterState
Tell the customer “you haven’t inserted a quarter”

Tell the customer “please wait, we’re already giving you a gumball”
Tell the customer “sorry, you already turned the crank”
Tell the customer “turning twice doesn’t get you another gumball”

Tell the customer “the machine is sold out”
Tell the customer “you haven’t inserted a quarter yet”

Tell the customer “you can’t insert another quarter”

Tell the customer “There are no gumballs”

Go to SoldState

Give back quarter, go to No Quarter state

Tell the customer “you turned, but there’s no quarter”

NoQuarterState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

SoldOutState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

SoldState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

HasQuarterState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

Tell the customer “you need to pay first”

Tell the customer, “no gumball dispensed”

Dispense one gumball. Check number of gumballs; if > 0, go 
to NoQuarter state, otherwise, go to Sold Out state

Tell the customer “no gumball dispensed”

Tell the customer “please wait, we’re already giving you a gumball”
Tell the customer “sorry, you already turned the crank”
Tell the customer “turning twice doesn’t get you another gumball”

WinnerState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()Dispense two gumballs. Check number of gumballs; if > 0, 
go to NoQuarter state, otherwise, go to SoldOutState

exercise solutions

Download at WoweBook.Com



the state pattern

you are here 4 427

      SoldOut

GumballMachine

GumballMachine

        Sold

GumballMachine

        SoldSold

    HasQuarterasassa QsQQs uQuuQ auaau rtererre

    NoQuarter

      SoldOut

Sold

    HasQuarterasassa QsQQs uQuuQ auaau rtererre

    NoQuarter

      SoldOut

        SoldSold

    HasQuarterasassa QsQQs uQuuQ auaau rtererre

    NoQuarter

GumballMachine

        SoldSold

    HasQuarterasassa QsQQs uQuuQ auaau rtererre

    NoQuarter

      SoldOut

Gumball Machine States

Gumball Machine StatesGumball Machine States

Gumball Machine States

1 2

43

current state

current state
current state

current state

Behind the Scenes: 
Self-Guided Tour 
Solution

insertQuarter()

insertQuarter()

delegates to 
current state

turnCrank()

turnCrank()

delegates

transitions to 
HasQuarter state

machine action machine action

transitions to 
Sold state

dispense()

Here the machine 
gives out a gumball 
by calling the internal 
dispense() action. and then transitions 

to NoQuarter

NoQQuQuuQ auaau rter

SooldOdOOd ut

NoQQuQuuQ auaau rter

SooldOdOOd ut

NoQQuQuuQ auaau rter

SooldOdOOd ut

NoQQuQuuQ auaau rter

SooldOdOOd ut

Download at WoweBook.Com



428 Chapter 10

Match each pattern with its description:

Pattern Description

State

Strategy

Template Method

Encapsulate interchangeable 
behaviors and use delegation to 
decide which behavior to use

Subclasses decide how 
to implement steps in an 
algorithm

Encapsulate state-based 
behavior and delegate 
behavior to the current state

Sharpen your pencil
We need you to write the refill() method for the Gumball machine.  It has one 
argument, the number of  gumballs you’re adding to the machine, and should 
update the gumball machine count and reset the machine’s state.

void refill(int count) {
    this.count = count;
    state = noQuarterState;
}

exercise solutions

Download at WoweBook.Com


	Chapter 10: the State Pattern

